Identification of nonviable cells in immunofluorescently stained cell populations is essential for obtaining accurate data. Fluorescent non‐vital DNA dyes, particularly propidium iodide (PI), have been used routinely in flow cytometry for discrimination of dead cells from viable cells on the basis of fluorescence. We describe here the use of an alternative DNA dye, 7‐amino‐actinomycin D (7‐AAD), which can replace PI for the exclusion of nonviable cells. As an example, we present in this paper the utilization of 7‐AAD on various leukemic cell lines for dead cell exclusion whenever the viable cell population could not be discriminated reliably from nonviable cells on the light scatter histogram; 7‐AAD is suitable for dead cell discrimination in lengthy experiments because it is efficiently excluded by intact cells and has a high DNA binding constant. In addition, the dye is valuable in combination with phycoerythrin (PE)‐fluorescence dual‐color flow cytometry on a single argon laser instrument, since its emission in the far red can easily be separated from the emission of PE; 7‐AAD was used on fluoresceinisothiocyanate (FITC) and PE surface‐labeled human thymocytes for characterization of the dying subpopulation of cells which is undergoing programmed cell death. In this heterogeneous cell preparation, the spectral properties of the dye permitted the classification of viable and nonviable cell subpopulations by multiparameter analysis.
Gaucher disease is an inherited lysosomal storage disease in which the loss in functional activity of glucocerebrosidase (GC) results in the storage of its lipid substrate in cells of the macrophage lineage. A gene therapy approach involving retroviral transduction of autologous bone marrow (BM) followed by transplantation has been recently approved for clinical trial. Amelioration of the disease symptoms may depend on the replacement of diseased macrophages with incoming cells expressing human GC; however, the processes of donor cell engraftment and vector gene expression have not been addressed at the cellular level in relevant tissues. Therefore, we undertook a comprehensive immunohistologic study of macrophage and microglia replacement after murine BM transplantation with retrovirus-marked BM. Serial quantitative PCR analyses were employed to provide an overview of the time course of engraftment of vector-marked cells in a panel of tissues. Following reconstitution of hematopoietic tissues with vector- marked donor cells at early stages, GC+ cells began to infiltrate the liver, lung, brain, and spinal cord by 3 months after transplant. Immunohistochemical analyses of PCR+ tissues using the 8E4 monoclonal antibody specific for human GC revealed that macrophages expressing human GC had partially reconstituted the Mac-1+ population in all tissues in a manner characteristic to each tissue type. In the brain, 20% of the total microglia had been replaced with donor cells expressing GC by 3 to 4 months after transplant. The finding that significant numbers of donor cells expressing a retroviral gene product immigrate to the central nervous system suggests that gene therapy for neuronopathic forms of lysosomal storage diseases as well as antiviral gene therapy for AIDS may be feasible.
We tested the ability of a recombinant adeno-associated virus (rAAV) vector to express and integrate exogenous DNA into human hematopoietic cells in the absence of selection. We developed an rAAV vector, AAV-tNGFR, carrying a truncated rat nerve growth factor receptor (tNGFR) cDNA as a cell surface reporter under the control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat. An analogous MoMuLV-based retroviral vector (L-tNGFR) was used in parallel, and gene transfer and expression in human hematopoietic cells were assessed by flow cytometry and DNA analyses. Following gene transfer into K562 cells with AAV-tNGFR at a multiplicity of infection (MOI) of 1.3 infectious units (IU), 26 to 38% of cells expressed tNGFR on the surface early after transduction, but the proportion of tNGFR expressing cells steadily declined to 3.0 to 3.5% over 1 month of culture. At an MOI of 130 IU, nearly all cells expressed tNGFR immediately posttransduction, but the proportion of cells expressing tNGFR declined to 62% over 2 months of culture. The decline in the proportion of AAV-tNGFR-expressing cells was associated with ongoing losses of vector genomes. In contrast, K562 cells transduced with the retroviral vector L-tNGFR expressed tNGFR in a constant fraction. Integration analyses on clones showed that integration occurred at different sites. Integration frequencies were estimated at about 49% at an MOI of 130 and 2% at an MOI of 1.3. Transduction of primary human CD34 ؉ progenitor cells by AAV-tNGFR was less efficient than with K562 cells and showed a declining percentage of cells expressing tNGFR over 2 weeks of culture. Thus, purified rAAV caused very high gene transfer and expression in human hematopoietic cells early after transduction, which steadily declined during cell passage in the absence of selection. Although the efficiency of integration was low, overall integration was markedly improved at a high MOI. While prolonged episomal persistence may be adequate for gene therapy of nondividing cells, a very high MOI or improvements in basic aspects of AAV-based vectors may be necessary to improve integration frequency in the rapidly dividing hematopoietic cell population.
Gene transfer into human hematopoietic stem cells with expression targeted to the maturing myelomonocytic progeny has applications for gene therapy of genetic diseases affecting granulocytes and macrophages. We hypothesized that promoters of myeloid-specific genes that are upregulated with myelomonocytic differentiation would also upregulate expression of an exogenous gene in a retroviral vector. Moloney murine leukemia virus (MoMuLV)-based retroviral vectors using promoters from hematopoietic genes (CD11b, CD18, and CD34) were compared with vectors with viral promoters (MoMuLV long terminal repeat [LTR], cytomegalovirus [CMV], and simian virus 40 [SV40]). Human glucocerebrosidase (GC) cDNA was the reporter gene. HL60 cells were transduced with these vectors and vector-derived GC activity was compared in undifferentiated HL-60 cells and the same cells differentiated into granulocytes using dimethyl sulfoxide or monocyte/macrophages using phorbol myristate acetate. In undifferentiated HL-60 cells, vector-derived GC activity was the highest when it was controlled by the MoMuLV LTR. In HL-60 cells differentiated into granulocytes, vector-derived GC activity transcribed from the CD11b, MoMuLV LTR, and CMV promoters was equivalent to 1.7, 1.5, and 1.5 times the normal endogenous GC activity, respectively, and 0.8, 2.0, and 3.6 times the normal GC activity, respectively, in those differentiated into macrophages. With granulocytic differentiation, the CD11b promoter showed maximal induction in GC activity (8-fold); with macrophage differentiation, the CD11b promoter showed a fourfold induction in GC expression. The CD11b promoter also generated significant levels of GC activity in the myelomonocytic progeny of transduced CD34+ cells. Expression from the CD11b promoter, unlike that from the CMV or the MoMuLV LTR promoters, was relatively myelomonocyte-specific, with minimal expression observed in Jurkat T cells or HeLa carcinoma cells. The induction of expression from the CD11b promoter with differentiation in HL-60 cells correlates with the developmental regulation of the CD11b gene. Retroviral vectors using the CD11b promoter have potential utility for gene therapy of disorders affecting the myelomonocytic lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.