We report highly surface sensitive core-level photoelectron spectra of small carboxylic acids (formic, acetic and butyric acid) and their respective carboxylate conjugate base forms (formate, acetate and butyrate) in aqueous solution. The relative surface propensity of the carboxylic acids and carboxylates is obtained by monitoring their respective C1s signal intensities from a solution in which their bulk concentrations are equal. All the acids are found to be enriched at the surface relative to the corresponding carboxylates. By monitoring the PE signals of acetic acid and acetate as a function of total concentration, we find that the protonation of acetic acid is nearly complete in the interface layer. This is in agreement with literature surface tension data, from which it is inferred that the acids are enriched at the surface while (sodium) formate and acetate, but not butyrate, are depleted. For butyric acid, we conclude that the carboxylate form co-exists with the acid in the interface layer. The free energy cost of replacing an adsorbed butyric acid molecule with a butyrate ion at 1.0 M concentration is estimated to be >5 kJ mol(-1). By comparing concentration dependent surface excess data with the evolution of the corresponding photoemission signals it is furthermore possible to draw conclusions about how the distribution of molecules that contribute to the excess is altered with bulk concentration.
The local electronic structure of glycine in neutral, basic, and acidic aqueous solution is studied experimentally by X-ray photoelectron spectroscopy and theoretically by molecular dynamics simulations accompanied by first-principle electronic structure and spectrum calculations. Measured and computed nitrogen and carbon 1s binding energies are assigned to different local atomic environments, which are shown to be sensitive to the protonation/deprotonation of the amino and carboxyl functional groups at different pH values. We report the first accurate computation of core-level chemical shifts of an aqueous solute in various protonation states and explicitly show how the distributions of photoelectron binding energies (core-level peak widths) are related to the details of the hydrogen bond configurations, i.e. the geometries of the water solvation shell and the associated electronic screening. The comparison between the experiments and calculations further enables the separation of protonation-induced (covalent) and solvent-induced (electrostatic) screening contributions to the chemical shifts in the aqueous phase. The present core-level line shape analysis facilitates an accurate interpretation of photoelectron spectra from larger biomolecular solutes than glycine.
We investigate various mechanisms contributing to the surface ion distributions in simple and mixed aqueous alkali-halide solutions depending on the total salt concentration, using a combination of photoelectron spectroscopy and molecular dynamics simulations. In simple solutions, the surface enhancement of large polarizable anions is reduced with increasing concentration. In the case of a NaBr/NaCl mixed aqueous solution, with bromide as the minority component, the situation is more complex. While the total anion/cation charge separation is similarly reduced with increasing salt content, this alone does not uniquely determine the ion distribution due to the co-existence of two different anions, Br(-) and Cl(-). We show that bromide is selectively surface enhanced at higher concentrations, despite the fact that the total anion surface enhancement is reduced. This phenomenon, which can be viewed as "salting out" of bromide by NaCl might have consequences for our understanding of the surface structure of mixed aqueous solutions subjected to concentration increase due to dehydration, such as seawater-born aerosols.
Valence and core level photoelectron spectra and Auger electron spectra of ammonia in pure clusters have been measured. The Auger electron spectra of gas-phase ammonia, pure ammonia clusters and ammonia in aqueous solution are compared and interpreted via ab initio calculations of the Auger spectrum of the ammonia monomer and dimer. The calculations reveal that the final two-hole valence states can be delocalized over both ammonia molecules. Features at energies pertaining to delocalized states involving one, or more, hydrogen bonding orbitals can be found in both the ammonia cluster Auger electron spectrum and in that of the liquid solvated molecule. The lower Coulombic repulsion between two delocalized valence final state holes gives higher kinetic energy of the Auger electrons which is also observed in the spectra. This decay path--specific to the condensed phase--is responsible for more than 5% of the total cluster Auger intensity. Moreover, this interpretation is also applicable to the solid phase since the same features have been observed, but not assigned, in the Auger spectrum of solid ammonia.
Photoelectron spectra of tetrabutylammonium iodide (TBAI) dissolved in water have been
recorded using a novel experimental set-up, which enables photoelectron spectroscopy of
volatile liquids. The set-up is described in detail. Ionization energies are reported for
I− 5p,
I−
4d, C 1s and N 1s. The C 1s spectrum shows evidence of inelastic scattering of the
photoelectrons, that differs from the case of TBAI in formamide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.