Background c-Myc, a well-established oncogene, plays an important role in the initiation and progression of various cancers, including prostate cancer. However, its mechanism in cancer cell remains largely unknown and whether there exist a deubiquitinase targeting c-Myc also remains elusive. Methods Bioinformatic analysis and shRNA screening methods were used to identify potential deubiquitinases that correlate with c-Myc gene signature. Cell proliferation and viability were measured by Cell-Counting-Kit 8 and colony formation assays. A mouse xenograft model of PC3 cells was established to confirm the function of USP16 in vivo. The interaction between USP16 and c-Myc protein was assessed by co-immunoprecipitation and protein co-localization assays. Immunohistochemistry staining was performed to detect the expression of USP16, Ki67, and c-Myc in xenograft tissues and clinical tumour tissues. Furthermore, the correlation between USP16 and c-Myc was confirmed by RNA sequencing. Results Functional analyses identified USP16, known as a deubiquitinase, was strongly correlated with the c-Myc gene signature. Depletion of USP16 was shown to significantly suppress the growth of PCa cells both in vitro and in vivo. Co-immunoprecipitation and ubiquitination assays confirmed that USP16 served as a novel deubiquitinase of c-Myc and overexpression of c-Myc significantly rescued the effects of USP16 disruption. Immunohistochemistry staining and RNA-seq tactics were further used to confirm the positive correlation between USP16 and c-Myc expression. Expression of USP16 in human PCa tissues was higher than that seen in normal prostate tissues and its high expression was found associated with poor prognosis. Conclusions USP16 serves as a novel deubiquitinase of c-Myc. Downregulation of USP16 markedly suppressed PCa cell growth both in vitro and in vivo. USP16 regulates PCa cell proliferation by deubiquitinating and stabilizing c-Myc, making it a potential therapeutic candidate for the treatment of PCa.
BACKGROUND: Krüppel-like factor 13 (KLF13), a member of the KLF family, is involved in the development of immunological diseases and tumor progression. However, the expression patterns and potential functions of KLF13 in prostate carcinoma are still unknown. Here, we aimed to study the roles and mechanisms of KLF13 in prostate cancer.METHODS: The expression levels of KLF13 was detected by Immunohistochemistry in prostate tumor tissues and the paired non-tumor tissues. The effects of KLF13 up-regulation was tested by performing CCK8, cell colon formation, flow cytometric analysis and measurement of tumor proliferation in nude mice. Signaling pathway was analyzed by Western blot.RESULTS: The current study, for the first time, found that KLF13 was downregulated in prostate tumor tissues as compared to the paired non-tumor tissues. The overexpression of KLF13 dramatically inhibited cell proliferation and induced apoptosis by suppressing the AKT pathway in human prostate cancer cells. Moreover, the ectopic expression of KLF13 efficiently delayed the onset of PC3 xenografts and inhibited the tumor growth in vivo.CONCLUSIONS: KLF13 functions as a tumor suppressor protein in PCa, and the pharmacological activation of KLF13 might represent a potential approach for the treatment of prostate cancer.
Background POH1, a member of the JAMM domain containing deubiquitinases, functions in malignant progression of certain types of cancer. However, the role of POH1 in prostate cancer (PCa) remains unclear. Methods We performed RNA interference against the JAMM members in PC3 cells and analyzed cell proliferation. POH1 knockdown was established to evaluate the effects of POH1 on cell growth in vitro and in vivo. RNA‐sequencing was utilized to explore the molecular details underlying the biological function of POH1 in PCa. The expression of POH1 in PCa tissues was detected by immunohistochemistry. The POH1 inhibitor capzimin was evaluated to explore whether pharmacologically inhibiting POH1 significantly affected PCa cell proliferation alone or enhanced the inhibitory efficacy of docetaxel and androgen deprivation. Results Functional analyses identified POH1 as a JAMM deubiquitinase that is required for PCa proliferation. Importantly, expression of POH1 was higher in human PCa tissues (PCas) than that in normal prostate tissues, and a positive correlation was detected between elevated POH1 expression and higher pathological grades in PCas. In vivo experiments further demonstrated that depleting POH1 significantly suppressed the growth of PCa cell xenografts. POH1 deficiency profoundly inhibited the expression of a set of genes involving the cell cycle and caused G0/G1 phase arrest. Furthermore, the POH1 inhibitor capzimin phenotypically recapitulated the effects of POH1 knockdown and improved the efficacy of docetaxel and androgen deprivation in PCa cells. Conclusions POH1 was overexpressed in PCas and was correlated with pathological grades in human PCas. Inhibiting POH1 by gene silencing or pharmacological inhibition with capzimin suppressed PCa cell growth. Exploring the inhibition of POH1 in combination with other drugs may provide a strategy to benefit patients with PCa.
Purpose We aimed to find the possible key targets of Yougui pill and Buzhong Yiqi decoction for the treatment of sexual dysfunction. Materials and Methods The composition of Yougui pill combined with Buzhong Yiqi decoction was obtained, and its effective components of medicine were screened using ADME; the component target proteins were predicted and screened based on the TCMSP and BATMAN databases. Target proteins were cross-validated using the CTD database. We performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for target proteins using the Cytoscape plugin ClueGO + CluePedia and the R package clusterProfiler, respectively. Subsequently, protein-protein interaction (PPI) analyses were conducted using the STRING database. Finally, a pharmacological network was constructed. Results The pharmacological network contained 89 nodes and 176 relation pairs. Among these nodes, there were 12 for herbal medicines (orange peel, licorice, Eucommia, Aconite, Astragalus, Chinese wolfberry, yam, dodder seed, ginseng, Cornus officinalis, Rehmannia, and Angelica), 9 for chemical components (18-beta-glycyrrhetinic acid, carvacrol, glycyrrhetinic acid, higenamine, nobilin, quercetin, stigmasterol, synephrine, and thymol), 62 for target proteins (e.g., NR3C1, ESR1, PTGS2, CAT, TNF, INS, and TP53), and 6 for pathways (MAPK signaling pathway, proteoglycans in cancer, dopaminergic synapse, thyroid hormone signaling pathway, cAMP signaling pathway, and neuroactive ligand-receptor interaction). Conclusion NR3C1, ESR1, PTGS2, CAT, TNF, INS, and TP53 may be important targets for the key active elements in the decoction combining Yougui pill and Buzhong Yiqi. Furthermore, these target proteins are relevant to the treatment of sexual dysfunction, probably via pathways associated with cancer and signal transduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.