Sensitization of the capsaicin receptor TRPV1 is central to the initiation of pathological forms of pain, and multiple signaling cascades are known to enhance TRPV1 activity under inflammatory conditions. How might detrimental escalation of TRPV1 activity be counteracted? Using a genetic-proteomic approach, we identify the GABAB1 receptor subunit as bona fide inhibitor of TRPV1 sensitization in the context of diverse inflammatory settings. We find that the endogenous GABAB agonist, GABA, is released from nociceptive nerve terminals, suggesting an autocrine feedback mechanism limiting TRPV1 sensitization. The effect of GABAB on TRPV1 is independent of canonical G protein signaling and rather relies on close juxtaposition of the GABAB1 receptor subunit and TRPV1. Activating the GABAB1 receptor subunit does not attenuate normal functioning of the capsaicin receptor but exclusively reverts its sensitized state. Thus, harnessing this mechanism for anti-pain therapy may prevent adverse effects associated with currently available TRPV1 blockers.
SummaryBacterial ingestion and killing by phagocytic cells are essential processes to protect the human body from infectious microorganisms. However, only few proteins implicated in intracellular bacterial killing have been identified to date. We used Dictyostelium discoideum, a phagocytic bacterial predator, to study intracellular killing. In a random genetic screen we identified Kil2, a type V P-ATPase as an essential element for efficient intracellular killing of Klebsiella pneumoniae bacteria. Interestingly, kil2 knockout cells still killed efficiently several other species of bacteria, and did not show enhanced susceptibility to Mycobacterium marinum intracellular replication. Kil2 is present in the phagosomal membrane, and its structure suggests that it pumps cations into the phagosomal lumen. The killing defect of kil2 knockout cells was rescued by the addition of magnesium ions, suggesting that Kil2 may function as a magnesium pump. In agreement with this, kil2 mutant cells exhibited a specific defect for growth at high concentrations of magnesium. Phagosomal protease activity was lower in kil2 mutant cells than in wild-type cells, a phenotype reversed by the addition of magnesium to the medium. Kil2 may act as a magnesium pump maintaining magnesium concentration in phagosomes, thus ensuring optimal activity of phagosomal proteases and efficient killing of bacteria.
The ABCD (for AntiBodies Chemically Defined) database is a repository of sequenced antibodies, integrating curated information about the antibody and its antigen with cross-links to standardized databases of chemical and protein entities. It is freely available to the academic community, accessible through the ExPASy server (https://web.expasy.org/abcd/). The ABCD database aims at helping to improve reproducibility in academic research by providing a unique, unambiguous identifier associated to each antibody sequence. It also allows to determine rapidly if a sequenced antibody is available for a given antigen.
Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome composition. To better evaluate the recent evolution of the X. fastidiosa chromosome backbone among distinct pathovars, the number and location of prophage-like regions on two finished genomes (9a5c and Temecula1), and in two candidate molecules (Ann1 and Dixon) were assessed. Based on comparative best bidirectional hit analyses, the majority (51%) of the predicted genes in the X. fastidiosa prophage-like regions are related to structural phage genes belonging to the Siphoviridae family. Electron micrograph reveals the existence of putative viral particles with similar morphology to lambda phages in the bacterial cell in planta. Moreover, analysis of microarray data indicates that 9a5c strain cultivated under stress conditions presents enhanced expression of phage anti-repressor genes, suggesting switches from lysogenic to lytic cycle of phages under stress-induced situations. Furthermore, virulence-associated proteins and toxins are found within these prophage-like elements, thus suggesting an important role in host adaptation. Finally, clustering analyses of phage integrase genes based on multiple alignment patterns reveal they group in five lineages, all possessing a tyrosine recombinase catalytic domain, and phylogenetically close to other integrases found in phages that are genetic mosaics and able to perform generalized and specialized transduction. Integration sites and tRNA association is also evidenced. In summary, we present comparative and experimental evidence supporting the association and contribution of phage activity on the differentiation of Xylella genomes.
The biosynthesis of quinolinate, the de novo precursor of nicotinamide adenine dinucleotide (NAD), may be performed by two distinct pathways, namely, the bacterial aspartate (aspartate-to-quinolinate) and the eukaryotic kynurenine (tryptophan-to-quinolinate). Even though the separation into eukaryotic and bacterial routes is long established, recent genomic surveys have challenged this view, because certain bacterial species also carry the genes for the kynurenine pathway. In this work, both quinolinate biosynthetic pathways were investigated in the Bacteria clade and with special attention to Xanthomonadales and Bacteroidetes, from an evolutionary viewpoint. Genomic screening has revealed that a small number of bacterial species possess some of the genes for the kynurenine pathway, which is complete in the genus Xanthomonas and in the order Flavobacteriales, where the aspartate pathway is absent. The opposite pattern (presence of the aspartate pathway and absence of the kynurenine pathway) in close relatives (Xylella ssp. and the order Bacteroidales, respectively) points to the idea of a recent acquisition of the kynurenine pathway through lateral gene transfer in these bacterial groups. In fact, sequence similarity comparison and phylogenetic reconstruction both suggest that at least part of the genes of the kynurenine pathway in Xanthomonas and Flavobacteriales is shared by eukaryotes. These results reinforce the idea of the role that lateral gene transfer plays in the configuration of bacterial genomes, thereby providing alternative metabolic pathways, even with the replacement of primary and essential cell functions, as exemplified by NAD biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.