Sepsis is a life-threatening organ dysfunction caused by a dysfunctional host response to infection. Neutrophils play a protective role by releasing antibacterial proteins or by phagocytizing bacteria. However, excess neutrophils can induce tissue damage. Recently, a novel intercellular communication pathway involving extracellular vesicles (EVs) has garnered considerable attention. However, whether EVs secreted by macrophages mediate neutrophil recruitment to infected sites has yet to be studied. In this study, we assessed the chemotactic effect of EVs isolated from mouse Raw264.7 macrophages on mouse neutrophils and found that CXCL2 was highly expressed in these EVs. By regulating CXCL2 in Raw264.7 macrophages, we found that CXCL2 on macrophage EVs recruited neutrophils in vitro and in vivo. The CXCL2 EVs activated the CXCR2/PKC/NOX4 pathway and induced tissue damage. This study provides information regarding the mechanisms underlying neutrophil recruitment to tissues and proposes innovative strategies and targets for the treatment of sepsis.
Background Sepsis has a high mortality rate, which is expensive to treat, and is a major drain on healthcare resources; it seriously impacts the quality of human life. The clinical features of positive or non-positive blood cultures have been reported, but the clinical features of sepsis with different microbial infections and how they contribute to clinical outcomes have not been adequately described. Methods We extracted clinical data of septic patients with a single pathogen from the online Medical Information Mart for Intensive Care(MIMIC)-IV database. Based on microbial cultures, patients were classified into Gram-negative, Gram-positive, and fungal groups. Then, we analyzed the clinical characteristics of sepsis patients with Gram-negative, Gram-positive, and fungal infections. The primary outcome was 28-day mortality. The secondary outcomes were in-hospital mortality, the length of hospital stay, the length of ICU stay, and the ventilation duration. In addition, Kaplan–Meier analysis was used for the 28-day cumulative survival rate of patients with sepsis. Finally, we performed further univariate and multivariate regression analyses for 28-day mortality and created a nomogram for predicting 28-day mortality. Results The analysis showed that bloodstream infections showed a statistically significant difference in survival between Gram-positive and fungal organisms; drug resistance only reached statistical significance for Gram-positive bacteria. Through univariate and multivariate analysis, it was found that both the Gram-negative bacteria and fungi were independent risk factors for the short-term prognosis of sepsis patients. The multivariate regression model showed good discrimination, with a C-index of 0.788. We developed and validated a nomogram for the individualized prediction of 28-day mortality in patients with sepsis. Application of the nomogram still gave good calibration. Conclusions Organism type of infection is associated with mortality of sepsis, and early identification of the microbiological type of a patient with sepsis will provide an understanding of the patient's condition and guide treatment.
Sepsis-induced acute lung injury (ALI) is a life-threatening disorder with intricate pathogenesis. Macrophage pyroptosis reportedly plays a vital role in ALI. Although it has been established that angiotensin receptor blockers (ARBs) can reduce sepsis-induced organ injury, the efficacy of sacubitril/valsartan (SV) for sepsis has been largely understudied. Here, we aimed to investigate the role of SV in sepsis-induced ALI. Caecal ligation and puncture (CLP) were used to induce polymicrobial sepsis and related ALI. The therapeutic effects of SV in CLP mice were subsequently assessed. Gasdermin D (GSDMD) À/À mice were used to validate the signalling pathways affected by SV. In vitro, mouse bone marrow-derived macrophages (BMDMs) and Raw264.7 cells were treated with SV following exposure to lipopolysaccharide and adenosine triphosphate. Finally, the serum obtained from 42 septic patients was used for biochemical analysis. Compared to the other ARBs, SV yielded more pronounced anti-inflammatory effects on macrophages. In vivo, SV decreased mortality rates, significantly reduced lung damage and prevented the inflammatory response in CLP mice. In addition, SV suppressed GSDMD-mediated macrophage pyroptosis in mice. In BMDMs and Raw264.7 cells, the anti-inflammatory and anti-pyroptosis properties of SV were verified. SV treatment effectively inhibited NLRP3 inflammasome activation and prevented macrophage pyroptosis in a GSDMD-dependent manner. Furthermore, we found that septic individuals had considerably higher serum angiotensin II levels. Overall, we found that SV might prevent ALI in CLP mice by inhibiting GSDMD-mediated pyroptosis of macrophages. Thus, SV might be a viable drug for sepsis-induced ALI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.