Biocompatible Au nanoparticles with surfaces modified by PEG (polyethylene glycol) were developed in view of possible applications for the enhancement of radiotherapy. Such nanoparticles exhibit preferential deposition at tumor sites due to the enhanced permeation and retention (EPR) effect. Here, we systematically studied their effects on EMT-6 and CT26 cell survival rates during irradiation for a dose up to 10 Gy with a commercial biological irradiator (E(average) = 73 keV), a Cu-Kalpha(1) x-ray source (8.048 keV), a monochromatized synchrotron source (6.5 keV), a radio-oncology linear accelerator (6 MeV) and a proton source (3 MeV). The percentage of surviving cells after irradiation was found to decrease by approximately 2-45% in the presence of PEG-Au nanoparticles ([Au] = 400, 500 or 1000 microM). The cell survival rates decreased as a function of the dose for all sources and nanoparticle concentrations. These results could open the way to more effective cancer irradiation therapies by using nanoparticles with optimized surface treatment. Difficulties in applying MTT assays were also brought to light, showing that this approach is not suitable for radiobiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.