This paper proposes a non-cooperative unmanned aerial vehicle (UAV) signal detection strategy based on a multichannel control signal with an energy detector (ED), wherein the sampling point of the control signal on each subchannel is adjusted with environmental signal-to-noise (SNR) in a semi-adaptive manner. In order to estimate the SNR in the environment, not only is a convolutional neural network (CNN) applied in the proposed signal detection strategy, but a long shor-term memory network (LSTM) network is also included; in terms of features, it combines deep features and time-dimension features. The numbers of layers of the CNN and LSTM impact the performance of the algorithm. The decision on the presence or absence of a control signal is made at the fusion center (FC) based on the majority voting rule. This paper shows that the network with a two-layer CNN and a two-layer LSTM can achieve high estimation accuracy of environmental SNR. Simultaneously, the detection accuracy is improved by about 1 dB compared with the classical multichannel detection schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.