Learning accurate Bayesian Network (BN) structures of high-dimensional and sparse data is difficult because of high computation complexity. To learn the accurate structure for high-dimensional and sparse data faster, this paper adopts a divide and conquer strategy and proposes a block learning algorithm with a mutual information based K-means algorithm (BLMKM algorithm). This method utilizes an improved K-means algorithm to block the nodes in BN and a maximum minimum parents and children (MMPC) algorithm to obtain the whole skeleton of BN and find possible graph structures based on separated blocks. Then, a pruned dynamic programming algorithm is performed sequentially for all possible graph structures to get possible BNs and find the best BN by scoring function. Experiments show that for high-dimensional and sparse data, the BLMKM algorithm can achieve the same accuracy in a reasonable time compared with non-blocking classical learning algorithms. Compared to the existing block learning algorithms, the BLMKM algorithm has a time advantage on the basis of ensuring accuracy. The analysis of the real radar effect mechanism dataset proves that BLMKM algorithm can quickly establish a global and accurate causality model to find the cause of interference, predict the detecting result, and guide the parameters optimization. BLMKM algorithm is efficient for BN learning and has practical application value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.