Sequential dynamics are a key feature of many modern recommender systems, which seek to capture the 'context' of users' activities on the basis of actions they have performed recently. To capture such patterns, two approaches have proliferated: Markov Chains (MCs) and Recurrent Neural Networks (RNNs). Markov Chains assume that a user's next action can be predicted on the basis of just their last (or last few) actions, while RNNs in principle allow for longer-term semantics to be uncovered. Generally speaking, MC-based methods perform best in extremely sparse datasets, where model parsimony is critical, while RNNs perform better in denser datasets where higher model complexity is affordable. The goal of our work is to balance these two goals, by proposing a self-attention based sequential model (SASRec) that allows us to capture long-term semantics (like an RNN), but, using an attention mechanism, makes its predictions based on relatively few actions (like an MC). At each time step, SASRec seeks to identify which items are 'relevant' from a user's action history, and use them to predict the next item. Extensive empirical studies show that our method outperforms various state-of-the-art sequential models (including MC/CNN/RNN-based approaches) on both sparse and dense datasets. Moreover, the model is an order of magnitude more efficient than comparable CNN/RNN-based models. Visualizations on attention weights also show how our model adaptively handles datasets with various density, and uncovers meaningful patterns in activity sequences.
Modeling the complex interactions between users and items as well as amongst items themselves is at the core of designing successful recommender systems. One classical setting is predicting users' personalized sequential behavior (or 'next-item' recommendation), where the challenges mainly lie in modeling 'third-order' interactions between a user, her previously visited item(s), and the next item to consume. Existing methods typically decompose these higherorder interactions into a combination of pairwise relationships, by way of which user preferences (user-item interactions) and sequential patterns (item-item interactions) are captured by separate components. In this paper, we propose a unified method, TransRec, to model such third-order relationships for large-scale sequential prediction. Methodologically, we embed items into a 'transition space' where users are modeled as translation vectors operating on item sequences. Empirically, this approach outperforms the state-of-theart on a wide spectrum of real-world datasets. Data and code are available at https://sites.google.com/a/eng.ucsd.edu/ruining-he/.
Abstract-Building effective recommender systems for domains like fashion is challenging due to the high level of subjectivity and the semantic complexity of the features involved (i.e., fashion styles). Recent work has shown that approaches to 'visual' recommendation (e.g. clothing, art, etc.) can be made more accurate by incorporating visual signals directly into the recommendation objective, using 'off-the-shelf' feature representations derived from deep networks. Here, we seek to extend this contribution by showing that recommendation performance can be significantly improved by learning 'fashion aware' image representations directly, i.e., by training the image representation (from the pixel level) and the recommender system jointly; this contribution is related to recent work using Siamese CNNs, though we are able to show improvements over state-of-the-art recommendation techniques such as BPR and variants that make use of pretrained visual features. Furthermore, we show that our model can be used generatively, i.e., given a user and a product category, we can generate new images (i.e., clothing items) that are most consistent with their personal taste. This represents a first step towards building systems that go beyond recommending existing items from a product corpus, but which can be used to suggest styles and aid the design of new products.
No abstract
Recent years have witnessed wide application of hashing for large-scale image retrieval. However, most existing hashing methods are based on handcrafted features which might not be optimally compatible with the hashing procedure. Recently, deep hashing methods have been proposed to perform simultaneous feature learning and hash-code learning with deep neural networks, which have shown better performance than traditional hashing methods with hand-crafted features. Most of these deep hashing methods are supervised whose supervised information is given with triplet labels. For another common application scenario with pairwise labels, there have not existed methods for simultaneous feature learning and hash-code learning. In this paper, we propose a novel deep hashing method, called deep pairwise-supervised hashing (DPSH), to perform simultaneous feature learning and hashcode learning for applications with pairwise labels. Experiments on real datasets show that our DPSH method can outperform other methods to achieve the state-of-the-art performance in image retrieval applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.