Electrical capacitance tomography (ECT) provides a non-intrusive means to visualize cross-sectional material distribution of gas-solid bubbling fluidized beds. Successful application of ECT strongly depends on the image reconstruction algorithm used. For on-line measurements of bubbling fluidized beds, employing an algorithm that can produce highquality images without extensive computation is necessary. Using the conventional Tikhonov regularization algorithm, image quality in the central area is basically satisfied but suffers from artifacts in the near-wall region. To solve this problem, a similar division operation learned from linear back projection was introduced to modify the conventional Tikhonov algorithm. Both numerical simulations and experiments were performed to evaluate the modified technique.The results indicate that the artifacts can be effectively removed and the reconstructed image quality is similar to Landweber method with dozens of iterations. Furthermore, the modified Tikhonov technique shows high accuracy when obtaining important hydrodynamic parameters in gas-solid bubbling fluidized beds. V C 2017 American Institute of Chemical Engineers AIChE J, 64: 29-41, 2018
The mechanisms underlying homogeneous fluidization of Geldart A particles have been debated for decades. Some ascribed the stability to inter-particle forces, while others insisted a purely hydrodynamic explanation. Valverde et al. (2001) fluidized 8.53-μm (i.e., Geldart C) particles by the addition of fumed silica nanoparticles and found that even during homogeneous fluidization both solid-like and fluid-like behavior can be distinguished. However, it is still unclear whether both states exist for true Geldart A particles. In this paper, particulate fluidization characteristics of three typical Geldart A powders were studied by camera recording, electrical capacitance tomography, and pressure fluctuation. For the first time, the existence of both solid-like state dominated by inter-particle forces and fluid-like state by fluid dynamics during homogeneous expansion of Geldart A particles was experimentally verified. Furthermore, the ability and performance of the used measurement techniques to identify different flow regimes were compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.