Purpose
The purpose of this study is to investigate the effect of laser scanning speed (LSS) on the corrosive-tribological performance of Ni-60%WC coating in Wusu mine water, which was beneficial to improve the friction–wear performance of cylinder liner on water injection pump.
Design/methodology/approach
Ni-60%WC coatings were fabricated on 45 steel by laser cladding, and the microstructure and tribological performance was analyzed using a super depth of field microscope and ball-on-plate friction tester, and the wear mechanism was also discussed.
Findings
At room temperature (RT, 25 ± 2 °C), the average coefficients of friction of substrate and Ni-60%WC coatings fabricated at the LSS of 6, 10, 12 and 14 mm/s are 0.48 ± 0.08, 0.23 ± 0.01, 0.21 ± 0.05, 0.22 ± 0.02 and 0.25 ± 0.04, respectively, and the corresponding wear rates are 8.755 × 104, 4.525 × 103, 1.539 × 103, 1.957 × 103 and 2.743 × 103 µm3·s–1·N–1, respectively, showing that the coating fabricated at the LSS of 10 mm/s has best friction reduction and wear resistance. The wear mechanism of Ni-60%WC coating is abrasive wear, fatigue wear and oxidative wear, which is resulted from the WC particles with the high-hardness.
Originality/value
Ni-60%WC coatings were first applied for cylinder liner, and the effect of laser scanning speed on its tribological performance was investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.