It is the research foundation of ship wake detection by laser and new-generation optical homing torpedo to investigate the influence of multiple scattering effect on light scattering intensity and polarization characteristics of the ship wake bubbles. The simulation model of laser back-scattering detection by ship wake bubbles is based on vector Monte Carlo method, and the multiple scattering mechanism is studied. The influences of multiple scattering effect and the bubble density in ship wake on the light scattering intensity and polarization characteristics of echo signal are analyzed. The echo photon polarization contribution reception method and the echo signal polarization statistical method are proposed to solve the problem that the low photon return probability cannot form the echo energy in the system with small receiver field of view. These methods are based on the basic idea of the particle collision importance sampling and the traditional energy receiving method. The polarization detection experimental platform for the simulated wake bubbles is built and the accuracy of the simulation results is verified in experiment. The consistence of the experimental and simulation results shows that the bubble distance and density information can be characterized by echo intensity, polarization information and the echo signal intensity, and the polarization characteristics can be used to detect and distinguish the ship wake bubbles, or even a low density wake bubbles with high precision.
The multiple scattering of underwater lidar for wake happens in the near field, which leads ordinary receiving system to be saturated due to lack of dynamic range. The receiving system recovery time is usually up to several nanoseconds, which affects the receiving of the far-field signal. For this problem, the attenuation law of laser back-scattering intensity by water is analyzed and a front-end receiver of underwater lidar with energy consumption is developed. A high-speed reverse transient cancellation current is superimposed on the strong peak of near-field part signal to prevent the receiving system from being saturated, thereby restoring the two signals to integrated returned signal waveform. The technical difficulties are analyzed and the solutions are presented. The influence of generation time of transient cancellation current on intensity is discussed. The results of measurement and analysis prove that the transient cancellation current is 5 ns in pulse width, its adjustable step of 122 nA and the adjustable range is 135360 upA. The system suppresses the near-field strong scattering signal successfully and can meet the requirement for the underwater large dynamic range lidar for wake.
The numerical simulation of ship wake laser scattering mechanism and the detection process are important foundations for the laser detection and guidance of the ship wake. The feasibility that Monte Carlo method is introduced into the numerical simulation of lidar of ship wake is analyzed firstly. The Monte Carlo simulation model of laser detection of ship wake is developed with the actual parameters of self-developed lidar of ship wake. The causes of the large variance and low photon utilization of simulation results are in-depth analyzed by statistics on the simulation results. To resolve this problem, the method of photon collision forced in the receive optical fields, the photon splitting method with the total free pach of photon serving as a criterion, and the conbination of the two methods are put forward based on partial sampling theory and the basic principle of division-roulette bet. The comparative analyses of the simulation and the experimental results show that the proposed model simulation results fit to experimental data better, thus the correctness of the model is verified. The photon collision forced in the receive optical field and division-the roulette method can effectively reduce the variance and increase the photon utilization. In this paper, the Monte Carlo method is introduced into the simulation process of lidar of ship wake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.