Stent inner diameter is a key factor influencing the imaging of the stent lumen. DSCT demonstrated a higher negative predictive value in ISR assessment, suggesting that it could replace CAG for assessing the patency of stents with a larger inner diameter (≥3 mm).
Atherosclerosis (AS) is one a disease that seriously endangers human health. Previous studies have demonstrated that transient receptor potential channel-1 (TRPC1)/large conductance Ca 2+ activated K + channel (BK) signal complex is widely distributed in arteries. Therefore, it was hypothesized that TRPC1-BK signal complex may be a new target for the treatment of AS-related diseases. Apolipoprotein E -/-(ApoE -/-) mice were used to establish an atherosclerotic animal model in the present study, and the association between AS and the TRPC1-BK signal complex was examined. The present study aimed to compare the differences in the expression levels of mRNAs and proteins of the TRPC1-BK signal complex expressed in the aortic vascular smooth muscle tissue, between mice with AS and control mice. There were 10 mice in each group. Reverse transcription PCR, western blotting and immunohistochemistry were used to detect the differences in the mRNA and protein expression levels of TRPC1, BKα (the α subunit of BK) and BKβ 1 (the β 1 subunit of BK). The mRNA expression level of TRPC1 in AS model mice was significantly higher compared with that in the control group (P<0.05). However, the mRNA expression levels of BKα and BKβ 1 were lower compared with those in the controls (both P<0.01). The mice in the ApoE -/group successfully developed AS. In this group, the protein expression level of TRPC1 was significantly higher than that in the control group (P<0.01), while the protein expression levels of BKα and BKβ 1 were lower compared with those in the control group (P<0.01 and P<0.05, respectively). Collectively, it was identified that the protein and mRNA expression levels of the TRPC1/BK signal complex in the aortic vascular smooth muscle tissue could be influenced by the development of AS in mice. Hence, the TRPC1/BK signal complex may be a potential therapeutic target for the prevention and treatment of AS-related complications in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.