CYP450 plays an essential role in the development and growth of the fruits of Siraitia grosvenorii. However, little is known about the SgCYP450-4 gene in S. grosvenorii. Here, based on transcriptome data, a full-length cDNA sequence of SgCYP450-4 was cloned by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid-amplification of cDNA ends (RACE) strategies. SgCYP450-4 is 1677 bp in length (GenBank accession No. AEM42985.1) and contains a complete open reading frame (ORF) of 1422 bp. The deduced protein was composed of 473 amino acids, the molecular weight is 54.01 kDa, the theoretical isoelectric point (PI) is 8.8, and the protein was predicted to possess cytochrome P450 domains. SgCYP450-4 gene was highly expressed in root, diploid fruit and fruit treated with hormone and pollination. At 10 days after treatment with pollination and hormones, the expression of SgCYP450-4 had the highest level and then decreased over time, which was consistent with the development of fruits of S. Grosvenorii. Hormonal treatment could significantly induce the expression of SgCYP450-4. These results provide a reference for regulation of fruit development and the use of parthenocarpy to generate seedless fruit, and provide a scientific basis for the production of growth regulator application agents.
Context
Bombax ceiba
Linnaeus (Bombacaceae) is known as silk cotton tree, the flowers of which are used in many medicinal applications.
Objective
To investigate the therapeutic effect of
B. ceiba
flower aqueous extracts (BCE) against loperamide-induced constipation and characterize the chemical composition of BCE.
Materials and methods
Sixty male Kunming mice were divided into control (saline), model (10 mg/kg loperamide + saline), phenolphthalein (10 mg/kg loperamide + 10 mg/kg phenolphthalein) and different dosage of BCE (10 mg/kg loperamide + 40, 80 and 160 mg/kg BCE, respectively) groups, and received intragastric administrations for eight days. Faecal water content, number of faeces, first black-stool defecation time and gastrointestinal transit rates were evaluated. Various biochemical and molecular biomarkers were assessed in blood and colon. UPLC-ESI-QTOF-MS/MS was used to tentatively identify the composition of the BCE.
Results
BCE treatment (160 mg/kg) could increase faecal water (15.75%), faeces number (11.65%), gastrointestinal transit rate (25.37%) and decrease first black-stool defecation time (24.04%). The BCE (80 mg/kg) increased the serum level of motilin (30.62%), gastrin (54.46%) and substance P (18.99%), and decreased somatostatin (19.47%). Additionally, the BCE (160 mg/kg) reduced the mucosal damage, restored colonic goblet cell function, down-regulated the protein expression of AQP
3
(33.60%) and increased c-kit protein expression (11.63%). Twelve known compounds, including protocatechuic acid, chlorogenic acid and rutin, previously reported in
B. ceiba,
were identified in the BCE.
Discussion and conclusions
This study suggested that BCE is a promising agent for the treatment of constipation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.