A plant’s early response to pathogen stress is a vital indicator of its disease resistance. In order to study the response mechanism of resistant and susceptible flax cultivars to Fusarium oxysporum f. sp. lini (Foln), we applied RNA-sequencing to analyze transcriptomes of flax with Foln 0.5, 2 and 8 hours post inoculation (hpi). We found a significant difference in the number of differential expression genes (DEGs) between resistant and susceptible flax clutivars. The number of DEGs in the Fusarium-resistant cultivar increased dramatically at 2 hpi, and a large number of DEGs participated in the Fusarium-susceptible cultivar response to Foln infection 0.5 hpi. GO enrichment analysis determined that the up-regulated DEGs of both flax cultivars were enriched such as oxidoreductase activity and oxidation-reduction process. At the same time, the genes involved in diterpenoid synthesis were up-regulated in resistant cultivar, while those involved in extracellular region, cell wall and organophosphate ester transport were down-regulated in susceptible cultivar. KEGG enrichment analysis showed the genes encoded WRKY 22 and WRKY33 which involved in MAPK signaling pathway were up-regulated expressed in S-29 and down-regulated expressed in R-7, negatively regulated the disease resistance of flax; The genes encoded Hsp 90 family which in involved in plant pathogen interaction pathway were up-regulated in R-7 and down-regulated in S-29, which positively regulated the disease resistance of flax; The genes encoded MYC2 transcription factor and TIFY proteins which involved in plant hormone signaling pathway were up-regulated in R-7, and regulated the jasmonic acid metabolism of flax and the signal transduction of plant hormones. Meanwhile seven regulatory genes with the most correlation were screened out, Among Lus10025000.g and Lus10026447.g regulated other genes expressed both in plant hormone signal transduction pathway and MAPK signal pathway. In conclusion, these findings will facilitate further studies on the function of these candidate genes in flax of response to Fusarium stress, and the breeding of disease-resistant flax cultivar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.