SUMMARY Development of malaria parasites within vertebrate erythrocytes requires nutrient uptake at the host cell membrane. The plasmodial surface anion channel (PSAC) mediates this transport and is an antimalarial target, but despite its importance, its molecular basis has been unknown. We now report a parasite gene family responsible for PSAC activity. We performed high-throughput screening to find transport inhibitors specific for distinct lines of the human pathogen P. falciparum. One inhibitor, 800-fold more active against PSAC from the Dd2 line than from HB3 parasites, was used with a genetic cross to map a single parasite locus on chromosome 3. DNA transfection and in vitro selections indicate that PSAC-inhibitor interactions are determined by two clag genes previously assumed to function in cytoadherence. These genes are conserved in plasmodia, exhibit expression switching, and encode an integral protein on the host membrane, as predicted by functional studies. This protein establishes novel ion channel activity on the erythrocyte surface.
CLC-ec1 is a prokaryotic CLC-type Cl−/H+ exchange transporter. Little is known about the mechanism of H+ coupling to Cl−. A critical glutamate residue, E148, was previously shown to be required for Cl−/H+ exchange by mediating proton transfer between the protein and the extracellular solution. To test whether an analogous H+ acceptor exists near the intracellular side of the protein, we performed a mutagenesis scan of inward-facing carboxyl-bearing residues and identified E203 as the unique residue whose neutralization abolishes H+ coupling to Cl− transport. Glutamate at this position is strictly conserved in all known CLCs of the transporter subclass, while valine is always found here in CLC channels. The x-ray crystal structure of the E203Q mutant is similar to that of the wild-type protein. Cl− transport rate in E203Q is inhibited at neutral pH, and the double mutant, E148A/E203Q, shows maximal Cl− transport, independent of pH, as does the single mutant E148A. The results argue that substrate exchange by CLC-ec1 involves two separate but partially overlapping permeation pathways, one for Cl− and one for H+. These pathways are congruent from the protein's extracellular surface to E148, and they diverge beyond this point toward the intracellular side. This picture demands a transport mechanism fundamentally different from familiar alternating-access schemes.
Plasmodium vivax is a major public health burden, responsible for the majority of malaria infections outside Africa. We explored the impact of demographic history and selective pressures on the P. vivax genome by sequencing 182 clinical isolates sampled from 11 countries across the globe, using hybrid selection to overcome human DNA contamination. We confirmed previous reports of high genomic diversity in P. vivax relative to the more virulent Plasmodium falciparum species; regional populations of P. vivax exhibited greater diversity than the global P. falciparum population, indicating a large and/or stable population. Signals of natural selection suggest that P. vivax is evolving in response to antimalarial drugs and is adapting to regional differences in the human host and the mosquito vector. These findings underline the variable epidemiology of this parasite species and highlight the breadth of approaches that may be required to eliminate P. vivax globally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.