In order to solve the problems of time-consuming and frequent mistranslations in traditional translation methods, this study designed an English-Chinese machine translation method based on transfer learning. On the basis of analyzing the basic principles and specific strategies of English-Chinese machine translation, the traditional neural machine translation methods are analyzed, and then the translation process is optimized by transfer learning. On the basis of preprocessing English-Chinese translation text data, features of English-Chinese translation text are extracted, features of English-Chinese translation text are rapidly classified by feature transfer learning, and machine models of English-Chinese translation are constructed based on the classification results. The objective of feature transfer learning is to reuse the past knowledge obtained in the form of dataset to be utilized for another target data. The findings of the experiment show the effectiveness of the proposed method in achieving the design expectation. The benefit of the proposed method includes a short translation time and fewer mistranslations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.