The concept of 'big data' has been widely discussed, and its value has been illuminated throughout a variety of domains. To quickly mine potential values and alleviate the ever-increasing volume of information, machine learning is playing an increasingly important role and faces more challenges than ever. Because few studies exist regarding how to modify machine learning techniques to accommodate big data environments, we provide a comprehensive overview of the history of the evolution of big data, the foundations of machine learning, and the bottlenecks and trends of machine learning in the big data era. More specifically, based on learning principals, we discuss regularization to enhance generalization. The challenges of quality in big data are reduced to the curse of dimensionality, class imbalances, concept drift and label noise, and the underlying reasons and mainstream methodologies to address these challenges are introduced. Learning model development has been driven by domain specifics, dataset complexities, and the presence or absence of human involvement. In this paper, we propose a robust learning paradigm by aggregating the aforementioned factors. Over the next few decades, we believe that these perspectives will lead to novel ideas and encourage more studies aimed at incorporating knowledge and establishing data-driven learning systems that involve both data quality considerations and human interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.