On the basis of benzoxazine chemistry, we have established a new way to synthesize highly uniform carbon nanospheres with precisely tailored sizes and high monodispersity. Using monomers including resorcinol, formaldehyde, and 1,6-diaminohexane, and in the presence of Pluronic F127 surfactant, polymer nanospheres are first synthesized under precisely programmed reaction temperatures. Subsequently, they are pseudomorphically and uniformly converted to carbon nanospheres in high yield, due to the excellent thermal stability of such polybenzoxazine-based polymers. The correlation between the initial reaction temperature (IRT) and the nanosphere size fits well with the quadratic function model, which can in turn predict the nanosphere size at a set IRT. The nanosphere sizes can easily go down to 200 nm while retaining excellent monodispersity, i.e., polydispersity <5%. The particle size uniformity is evidenced by the formation of large areas of periodic assembly structure. NMR, FT-IR, and elemental analyses prove the formation of a polybenzoxazine framework. As a demonstration of their versatility, nanocatalysts composed of highly dispersed Pd nanoparticles in the carbon nanospheres are fabricated, which show high conversion and selectivity, great reusability, and regeneration ability, as evidenced in a selective oxidation of benzyl alcohol to benzaldehyde under moderate conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.