The present study combined resting-state functional connectivity (FC) and Granger causality analysis (GCA) to explore frontostriatal network dysfunction in unilateral acute tinnitus (AT) patients with hearing loss. Methods:The participants included 42 AT patients and 43 healthy control (HC) subjects who underwent resting-state functional magnetic resonance imaging (fMRI) scans. Based on the seed regions in the frontostriatal network, FC and GCA were conducted between the AT patients and HC subjects. Correlation analyses were used to examine correlations among altered FC values, GCA values, and clinical features in AT patients.Results: Compared with HCs, AT patients showed a general reduction in FC between the seed regions in the frontostriatal network and nonauditory areas, including the frontal cortices, midcingulate cortex (MCC), supramarginal gyrus (SMG), and postcentral gyrus (PoCG). Using the GCA algorithm, we detected abnormal effective connectivity (EC) in the inferior occipital gyrus (IOG), MCC, Cerebelum_Crus1, and PoCG. Furthermore, correlations between disrupted FC/EC and clinical characteristics, especially tinnitus distress-related characteristics, were found in AT patients. Conclusions:Our work demonstrated abnormal FC and EC between the frontostriatal network and several nonauditory regions in AT patients with hearing loss, suggesting that multiple large-scale network dysfunctions and interactions are involved in the perception of tinnitus. These findings not only enhance the current understanding of the frontostriatal network in tinnitus but also serve as a reminder of the importance of focusing on tinnitus at an early stage.
PurposeCurrently, the underlying neurophysiological mechanism of acute tinnitus is still poorly understood. This study aimed to explore differences in brain functional connectivity (FC) within and between resting-state networks (RSNs) in acute tinnitus patients with hearing loss (ATHL). Furthermore, it also evaluated the correlations between FC alterations and clinical characteristics.MethodsTwo matched groups of 40 patients and 40 healthy controls (HCs) were included. Independent component analysis (ICA) was employed to obtain RSNs and FC differences were calculated within RSNs. In addition, the relationships between networks were conducted using functional network connectivity (FNC) analysis. Finally, an analysis of correlation was used to evaluate the relationship between FNC abnormalities and clinical data.ResultsResults of this study found that seven major RSNs including the auditory network (AN), cerebellum network (CN), default mode network (DMN), executive control network (ECN), sensorimotor network (SMN), ventral attention network (VAN), and visual network (VN) were extracted using the group ICA in both groups. Furthermore, it was noted that the ATHL group showed aberrant FC within the CN, ECN, and VN as compared with HCs. Moreover, different patterns of network interactions were observed between groups, including the SMN-ECN, SMN-CN, ECN-AN, DMN-VAN, and DMN-CN connections. The correlations between functional disconnection and clinical characteristics in ATHL were also found in this study.ConclusionIn conclusion, this study indicated widespread alterations of intra- and inter-network connectivity in ATHL, suggesting that multiple large-scale network dysfunctions and interactions are involved in the early stage. Furthermore, our findings may provide new perspectives to understand the neuropathophysiological mechanism of acute tinnitus.
Purpose: The present study combined resting-state functional connectivity (FC) and Granger causality analysis (GCA) to explore frontostriatal network dysfunction in unilateral acute tinnitus (AT) patients with hearing loss. Methods: The participants included 42 AT patients and 43 healthy control (HC) subjects who underwent resting-state functional magnetic resonance imaging (fMRI) scans. Based on the seed regions in the frontostriatal network, FC and GCA were conducted between the AT patients and HC subjects. Correlation analyses were used to examine correlations among altered FC values, GCA values, and clinical features in AT patients. Results: Compared with HCs, AT patients showed a general reduction in FC between the seed regions in the frontostriatal network and nonauditory areas, including the frontal cortices, midcingulate cortex (MCC) , supramarginal gyrus (SMG), and postcentral gyrus (PoCG) . Using the GCA algorithm, we detected abnormal effective connectivity (EC) in the inferior occipital gyrus (IOG), MCC, Cerebelum_Crus1, and PoCG. Furthermore, correlations between disrupted FC/EC and clinical characteristics, especially tinnitus distress-related characteristics, were found in AT patients. Conclusions: Our work demonstrated abnormal FC and EC between the frontostriatal network and several nonauditory regions in AT patients with hearing loss, suggesting that multiple large-scale network dysfunctions and interactions are involved in the perception of tinnitus. These findings not only enhance the current understanding of the frontostriatal network in tinnitus but also serve as a reminder of the importance of focusing on tinnitus at an early stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.