A flapping wing micro air vehicle (FWMAV) demands high lift and thrust generation for a desired payload. In view of this, the present work focuses on a novel way of enhancing the lift characteristics through integrating check-valves in the flapping wing membrane. Modal analysis and static analysis are performed to determine the natural frequency and deformation of the check-valve. Based on the inference, the check-valve opens and closes during the upstroke flapping and downstroke flapping, respectively. Wind tunnel experiments were conducted by considering the two cases of wing design, i.e., with and without a check-valve for various driving voltages, wind speeds and different inclined angles. A 20 cm-wingspan polyethylene terephthalate (PET) membrane wing with two check-valves, composed of central disc-cap with radius of 7.43 mm, supported by three S-beams, actuated by Evans mechanism to have 90° stroke angle, is considered for the 10 gf (gram force) FWMAV study. The aerodynamic performances, such as lift and net thrust for these two cases, are evaluated. The experimental result demonstrates that an average lift of 17 gf is generated for the case where check-valves are attached on the wing membrane to operate at 3.7 V input voltage, 30° inclined angle and 1.5 m/s wind speed. It is inferred that sufficient aerodynamic benefit with 68% of higher lift is attained for the wing membrane incorporated with check-valve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.