Cell proliferation and differentiation are highly coordinated processes. These two processes are disrupted during leukemogenesis, resulting in differentiation block and uncontrolled proliferation in leukemia. To understand the mechanisms disrupting the coordination between the two processes in acute promyelocytic leukemia (APL), we investigated the regulatory mechanism of the negative cell cycle regulator CDKN2D by the promyelocytic leukemia/retinoic acid receptor α (PML/RARα) fusion protein and the role of CDKN2D in cell differentiation and proliferation. We found that CDKN2D expression in APL cells was significantly lower than that in normal promyelocytes. By chromatin immunoprecipitation and luciferase reporter assays, we showed that PML/RARα directly bound to and inhibited the transactivation of the CDKN2D promoter. Further evidence by the truncated and mutated CDKN2D promoters revealed that the everted repeat 8 (ER8) motif on the promoter was the binding site of PML/RARα. Forced expression of CDKN2D induced G0/G1 phase arrest and partial granulocytic differentiation in APL-derived NB4 cells, suggesting the function of CDKN2D in regulating both cell proliferation and granulocytic differentiation. Furthermore, all-trans retinoic acid (ATRA) significantly induced CDKN2D expression in APL cells and knockdown of CDKN2D expression during ATRA treatment partially blocked the ATRA-induced differentiation and cell cycle arrest. Collectively, our data indicate that CDKN2D repression by PML/RARα disrupts both cell proliferation and differentiation in the pathogenesis of APL, and induced expression of CDKN2D by ATRA alleviates the disruption of both processes to ensure treatment efficiency. This study provides a mechanism for coupling proliferation and differentiation in leukemic cells through the action of CDKN2D.
Gallbladder cancer (GBC), the most frequent malignancy of the biliary tract, is associated with high mortality and extremely poor prognosis. 20(S)-ginsenoside Rg3 (20(S)-Rg3) is a steroidal saponin with high pharmacological activity. However, the anticancer effect of 20(S)-Rg3 in human GBC has not yet been determined. In this study, we primarily found that 20(S)-Rg3 exposure suppressed the survival of both NOZ and GBC-SD cell lines in a concentration-dependent manner. Moreover, induction of cellular senescence and G0/G1 arrest by 20(S)-Rg3 were accompanied by a large accumulation of p53 and p21 as a result of murine double minute 2 (MDM2) inhibition. 20(S)-Rg3 also caused a remarkable increase in apoptosis via the activation of the mitochondrial-mediated intrinsic caspase pathway. Furthermore, intraperitoneal injection of 20(S)-Rg3 (20 or 40 mg/kg) for 3 weeks markedly inhibited the growth of xenografts in nude mice. Our results demonstrated that 20(S)-Rg3 potently inhibited growth and survival of GBC cells both in vitro and in vivo. 20(S)-Rg3 attenuated GBC growth probably via activation of the p53 pathway, and subsequent induction of cellular senescence and mitochondrial-dependent apoptosis. Therefore, 20(S)-Rg3 may be a potential chemotherapeutic agent for GBC therapy.
Emerging evidence has linked the exosomes to many immunological disorders, including infectious diseases. However, knowledge regarding the role of exosomes in Helicobacter pylori infection is limited. Here, we show that serum exosomes from chronic gastritis patients with H. pylori infection (Hp exosomes) stimulate the expression of the soluble interleukin (IL)-6 receptor (sIL-6R), which is involved in IL-6 trans-signalling in gastric epithelial cells. Interestingly, sIL-6R up-regulates expression of the proinflammatory cytokine IL-1α, and the neutralization of sIL-6R suppresses IL-1α secretion. Thus, Hp exosomes regulate IL-1α expression via sIL-6R-mediated IL-6 trans-signaling. Altogether, this study reveals a novel perspective in which exosomes play a vital role in immunological mechanisms during H. pylori infection.
Low molecular weight heparins (LMWHs) and direct oral anticoagulants (DOACs) are among the recommended treatment options for cancer-associated thrombosis (CAT) in the 2019 National Comprehensive Care Network guidelines. Little is known about the current utilization of DOACs in CAT patients, particularly on the inpatient to outpatient therapy transition. This study assessed real-world treatment patterns of CAT in hospital/ED in adult cancer patients (≥ 18 years) diagnosed with CAT during a hospital visit in IQVIA's Hospital Charge Data Master database between July 1, 2015 and April 30, 2018, and followed their outpatient medical and pharmacy claims to evaluate the initial inpatient/ED and outpatient anticoagulants received within 3 months post-discharge. Results showed that LMWH and unfractionated heparin (UFH) were the most common initial inpatient/ED CAT treatments (35.2% and 27.4%, respectively), followed by DOACs (9.6%); 20.8% of patients received no anticoagulants. Most DOAC patients remained on DOACs from inpatient/ED to outpatient settings (71.4%), while 24.1%, 43.5%, and 0.1% of patients treated with LMWH, warfarin, or UFH respectively, remained on the same therapy after discharge. In addition, DOACs were the most common initial post-discharge outpatient therapy. Outpatient treatment persistence and adherence appeared higher in patients using DOACs or warfarin versus LMWH or UFH. This study shows that DOACs are used as an inpatient/ED treatment option for CAT, and are associated with less post-discharge treatment switching and higher persistence and adherence. Further research generating real-world evidence on the role of DOACs to help inform the complex CAT clinical treatment decisions is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.