Hypoxia-inducible factor (HIF) 1α is a metabolic regulator that plays an important role in immunologic responses. Previous studies have demonstrated that HIF1α participates in the M1 polarization of macrophages. To clarify the mechanism of HIF1α-induced polarization of M1 macrophage, myeloid-specific HIF1α overexpression (Lysm HIF1α lsl) mice were employed and the bone marrow-derived and peritoneal macrophages were isolated. RT-PCR results revealed that HIF1α overexpression macrophage had a hyperinflammatory state characterized by the upregulation of M1 markers. Cellular bioenergetics analysis showed lower cellular oxygen consumption rates in the Lysm HIF1α lsl mice. Metabolomics studies showed that HIF1α overexpression led to increased glycolysis and pentose phosphate pathway intermediates. Further results revealed that macrophage M1 polarization, induced by HIF1α overexpression, was via upregulating the mRNA expression of the genes related to the glycolysis metabolism. Our results indicate that HIF1α promoted macrophage glycolysis metabolism, which induced M1 polarization in mice.
BackgroundProblem-based learning (PBL), a pedagogical approach, is widely accepted in medical education. Manipulated by many factors, the internal motivation of learner is the most crucial determinant that affects the nature of the outcome, in which the influences of critical thinking (CT) remained elusive.MethodsOne hundred two third-year undergraduate medical students at Peking University were involved in this study. A Chinese version of the Critical Thinking Disposition Inventory (CTDI-CV) was used to assess the CT disposition, and the performance scores of students in PBL tutorials were compiled. A parametric bivariate correlation analysis was performed between the students’ CT scores and their PBL average scores. The PBL scores were compared between the strong and weak CT disposition groups using independent t-test. The analysis of numerical data was conducted using SPSS 16.0.ResultsCT disposition of third-year undergraduate medical students at Peking University was at a positive level, with an average score of 297.72. The total CT scores had a positive correlation with the scores of the PBL performance and its five dimensions significantly. In the majority, students with Strong-CT disposition obtained higher scores in PBL tutorials compared with students with Weak-CT disposition. The performance of these two groups was significantly different in the Late-Half but not in the Early-Half PBL tutorials. Furthermore, a significant improvement was observed in the students with strong CT but not weak CT dispositions.ConclusionCT disposition positively correlates to a students’ PBL performance. Students with stronger CT dispositions perform better in the PBL process and obtain higher scores. Our work suggested that the open-mindedness of the CT disposition is the primary factor that determines the improvement of the preparation dimensions in the PBL process.
The programmed death-1 (PD-1), a coinhibitory receptor expressed on activated T cells and B cells, is demonstrated to induce an immune-mediated response and play a critical role in tumor initiation and development. The cancer patients harboring PD-1 or PD ligand 1 (PD-L1) protein expression have often a poor prognosis and clinical outcome. Currently, targeting PD-1 pathway as a potential new anticancer strategy is attracting more and more attention in cancer treatment. Several monoclonal antibodies against PD-1 or PD-L1 have been reported to enhance anticancer immune responses and induce tumor cell death. Nonetheless, the precise molecular mechanisms by which PD-1 affects various cancers remain elusive. Moreover, this therapy is not effective for all the cancer patients and only a fraction of patients respond to the antibodies targeting PD-1 or PD-L1, indicating these antibodies may only works in a subset of certain cancers. Thus, understanding the novel function of PD-1 and genetic determinants of response to anti-PD-1 therapy will allow us to develop a more effective and individualized immunotherapeutic strategy for cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.