Clustering is a fundamental task in data analysis. Recently, deep clustering, which derives inspiration primarily from deep learning approaches, achieves state-of-the-art performance and has attracted considerable attention. Current deep clustering methods usually boost the clustering results by means of the powerful representation ability of deep learning, e.g., autoencoder, suggesting that learning an effective representation for clustering is a crucial requirement. The strength of deep clustering methods is to extract the useful representations from the data itself, rather than the structure of data, which receives scarce attention in representation learning. Motivated by the great success of Graph Convolutional Network (GCN) in encoding the graph structure, we propose a Structural Deep Clustering Network (SDCN) to integrate the structural information into deep clustering. Specifically, we design a delivery operator to transfer the representations learned by autoencoder to the corresponding GCN layer, and a dual self-supervised mechanism to unify these two different deep neural architectures and guide the update of the whole model. In this way, the multiple structures of data, from low-order to high-order, are naturally combined with the multiple representations learned by autoencoder. Furthermore, we theoretically analyze the delivery operator, i.e., with the delivery operator, GCN improves the autoencoder-specific representation as a high-order graph regularization constraint and autoencoder helps alleviate the over-smoothing problem in GCN. Through comprehensive experiments, we demonstrate that our propose model can consistently perform better over the state-of-the-art techniques.
With an increasing penetration of wind power in the modern electrical grid, the increasing replacement of large conventional synchronous generators by wind power plants will potentially result in deteriorated frequency regulation performance due to the reduced system inertia and primary frequency response. A series of challenging issues arise from the aspects of power system planning, operation, control and protection. Therefore, it is valuable to develop variable speed wind turbines (VSWTs) equipped with frequency regulation capabilities that allow them to effectively participate in addressing severe frequency contingencies. This paper provides a comprehensive survey on frequency regulation methods for VSWTs. It fully describes the concepts, principles and control strategies of prevailing frequency controls of VSWTs, including future development trends. It concludes with a performance comparison of frequency regulation by the four main types of wind power plants.
Community structure is one of the most important properties of complex networks and is a foundational concept in exploring and understanding networks. In real world, topology information alone is often inadequate to accurately find community structure due to its sparsity and noises. However, potential useful prior information can be obtained from domain knowledge in many applications. Thus, how to improve the community detection performance by combining network topology with prior information becomes an interesting and challenging problem. Previous efforts on utilizing such priors are either dedicated or insufficient. In this paper, we firstly present a unified interpretation to a group of existing community detection methods. And then based on this interpretation, we propose a unified semi-supervised framework to integrate network topology with prior information for community detection. If the prior information indicates that some nodes belong to the same community, we encode it by adding a graph regularization term to penalize the latent space dissimilarity of these nodes. This framework can be applied to many widely-used matrix-based community detection methods satisfying our interpretation, such as nonnegative matrix factorization, spectral clustering, and their variants. Extensive experiments on both synthetic and real networks show that the proposed framework significantly improves the accuracy of community detection, especially on networks with unclear structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.