This study proposes an iterative closest shape point (ICSP) registration method based on regional shape maps for 3D face recognition. A neutral expression image randomly selected from a face database is considered as the reference face. The point-to-point correspondences between the input face and the reference face are achieved by constructing the points’ regional shape maps. The distance between corresponding point pairs is then minimized by iterating through the correspondence findings and coordinate transformations. The vectors composed of the closest shape points obtained in the last iteration are regarded as the feature vectors of the input face. These 3D face feature vectors are finally used for both training and recognition using the Fisherface method. Experiments are conducted using the 3D face database maintained by the Chinese Academy of Science Institute of Automation (CASIA). The results show that the proposed method can effectively improve 3D face recognition performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.