The split feasibility problem models inverse problems arising from phase retrievals problems and intensity-modulated radiation therapy. For solving the split feasibility problem, Xu proposed a relaxed CQ algorithm that only involves projections onto half-spaces. In this paper, we use the dual variable to propose a new relaxed CQ iterative algorithm that generalizes Xu’s relaxed CQ algorithm in real Hilbert spaces. By using projections onto half-spaces instead of those onto closed convex sets, the proposed algorithm is implementable. Moreover, we present modified relaxed CQ algorithm with viscosity approximation method. Under suitable conditions, global weak and strong convergence of the proposed algorithms are proved. Some numerical experiments are also presented to illustrate the effectiveness of the proposed algorithms. Our results improve and extend the corresponding results of Xu and some others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.