Numerical simulations were performed to investigate pressure fluctuations in the S-shaped region of a pump-turbine model. Analyses focused on pressure fluctuations in the draft tube and in the gap between the guide vanes and runner. Calculations were made under six different operating conditions with a constant guide vane opening, and the best efficiency point, runaway point, and low-discharge point in the turbine brake zone were determined. The simulated results were compared with experimental measurements. In the draft tube, a twin vortex rope was observed. In the gap between the guide vanes and runner, a low frequency component was captured at both the runaway and low-discharge points in the turbine brake zone, which rotated at 65% of the runner frequency. This low frequency component was induced by the rotating stall phenomenon. At the runaway point, a single stall cell was found in the gap between the guide vanes and runner, while at the low-discharge point, four stall cells were observed.
Frequent changes in the operating modes pose significant challenges in the development of a pump-turbine with high efficiency and stability. In this paper, two pump-turbine runners, one with a large positive blade lean and the other with a large negative lean, are investigated numerically and experimentally. These two runners are designed by using the optimum stacking condition at the high pressure edge (HPE). The experimental and the numerical results show that both runners have good efficiency performances, and pressure fluctuations for the runner with a negative blade lean are much lower than those for the runner with a positive blade lean. The internal flow field analyses clarify the effects of the blade lean on the pressure distribution around the runner blades. In the turbine mode at partial load, the negative blade lean can control flow separation in the high pressure side of the runner and then reduce the pressure fluctuations in the vaneless space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.