With the development of the digital economy, the emerging marketing strategy of the e-commerce flash sales has been changing the traditional purchasing habits of customers. This imposes new decision-making challenges for companies involved in flash sales. It is important for companies to build the accurate product demand forecast analysis focusing on the characteristics of the flash sales and customer behaviors. In this paper, VIPS (Weipinhui, a Chinese e-commerce platform) is taken as a case study with the key focus on how sentiment factors in customer reviews affect product demand in flash sale platforms. The paper adopts two sentiment analysis methods based on emotional dictionaries. The method with a higher evaluation index is adopted to integrate the emotional factors into the autoregressive model for product demand and assessment. The experiments prove that the autoregressive model for integrating the sentiment factors demonstrates better forecasting performances than the models without sentiment factors. The experiments further confirm that when product demand for the previous two weeks and customer review sentiment factors in the previous week are taken into consideration, demand forecast effects are most accurate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.