In this study, the stochastic resonance phenomenon of a coupled double fractional-order harmonic oscillator with mass and damping fluctuation is investigated. Firstly, the Shapiro-Loginov formula and Laplace transform are used to obtain the analytical expression of the output amplitude gain of the system output. On this basis, aiming at the key factors involved in the model, including the coupling structure, fractional system, random fluctuation and external periodic force, the influence of coupling coefficient, double fractional order and driving frequency on the output amplitude gain (OAG) are analyzed, and reasonable physical explanations are provided. Secondly, numerical simulations are carried out to verify the accuracy of the theoretical solutions. The simulation results show that under certain conditions, the OAG of the system can appear stochastic resonance phenomenon with the above parameters, especially: 1) The OAG with the change of external drive frequency appears double peak, single peak and single valley stochastic resonance phenomenon, which does not appear under the same external disturbance with integer order and uncoupled conditions; 2) The order of double fractional derivative significantly affects the variation trend of OAG; 3) The coupling coefficient is not sensitive to the OAG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.