High-throughput sequencing technologies have generated massive protein sequences, but the annotations of protein sequences highly rely on the low-throughput and expensive biological experiments. Therefore, accurate and fast computational alternatives are needed to infer functional knowledge from protein sequences. The gene ontology (GO) directed acyclic graph (DAG) contains the hierarchical relationships between GO terms but is hard to be integrated into machine learning algorithms for functional predictions. We developed a deep learning system named PANDA2 to predict protein functions, which used the cutting-edge graph neural network to model the topology of the GO DAG and integrated the features generated by transformer protein language models. Compared with the top 10 methods in CAFA3, PANDA2 ranked first in cellular component ontology (CCO), tied first in biological process ontology (BPO) but had a higher coverage rate, and second in molecular function ontology (MFO). Compared with other recently-developed cutting-edge predictors DeepGOPlus, GOLabeler, and DeepText2GO, and benchmarked on another independent dataset, PANDA2 ranked first in CCO, first in BPO, and second in MFO. PANDA2 can be freely accessed from http://dna.cs.miami.edu/PANDA2/.
Background: Protein model quality assessment (QA) is an essential procedure in protein structure prediction. QA methods can predict the qualities of protein models and identify good models from decoys. Clustering-based methods need a certain number of models as input. However, if a pool of models are not available, methods that only need a single model as input are indispensable. Results: We developed MASS, a QA method to predict the global qualities of individual protein models using random forests and various novel energy functions. We designed six novel energy functions or statistical potentials that can capture the structural characteristics of a protein model, which can also be used in other protein-related bioinformatics research. MASS potentials demonstrated higher importance than the energy functions of RWplus, GOAP, DFIRE and Rosetta when the scores they generated are used as machine learning features. MASS outperforms almost all of the four CASP11 top-performing single-model methods for global quality assessment in terms of all of the four evaluation criteria officially used by CASP, which measure the abilities to assign relative and absolute scores, identify the best model from decoys, and distinguish between good and bad models. MASS has also achieved comparable performances with the leading QA methods in CASP12 and CASP13.
Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) can capture genome-wide chromatin interactions mediated by a specific DNA-associated protein. The ChIA-PET experiments have been applied to explore the key roles of different protein factors in chromatin folding and transcription regulation. However, compared with widely available Hi-C and ChIP-seq data, there are not many ChIA-PET datasets available in the literature. A computational method for accurately predicting ChIA-PET interactions from Hi-C and ChIP-seq data is needed that can save the efforts of performing wet-lab experiments. Here we present DeepChIA-PET, a supervised deep learning approach that can accurately predict ChIA-PET interactions by learning the latent relationships between ChIA-PET and two widely used data types: Hi-C and ChIP-seq. We trained our deep models with CTCF-mediated ChIA-PET of GM12878 as ground truth, and the deep network contains 40 dilated residual convolutional blocks. We first showed that DeepChIA-PET with only Hi-C as input significantly outperforms Peakachu, another computational method for predicting ChIA-PET from Hi-C but using random forests. We next proved that adding ChIP-seq as one extra input does improve the classification performance of DeepChIA-PET, but Hi-C plays a more prominent role in DeepChIA-PET than ChIP-seq. Our evaluation results indicate that our learned models can accurately predict not only CTCF-mediated ChIA-ET in GM12878 and HeLa but also non-CTCF ChIA-PET interactions, including RNA polymerase II (RNAPII) ChIA-PET of GM12878, RAD21 ChIA-PET of GM12878, and RAD21 ChIA-PET of K562. In total, DeepChIA-PET is an accurate tool for predicting the ChIA-PET interactions mediated by various chromatin-associated proteins from different cell types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.