As the major cause of the common cold in children and adults, human rhinoviruses (HRVs) are a group of small single-stranded positive-sense RNA viruses. HRVs translate their genetic information into a polyprotein precursor that is mainly processed by a virally encoded 3C protease (3Cpro) to generate functional viral proteins and enzymes. It has been shown that the enzymatic activity of HRV 3Cpro is essential to viral replication. The 3Cpro is distinguished from most other proteases by the fact that it has a cysteine nucleophile but with a chymotrypsin-like serine protease folding. This unique protein structure together with its essential role in viral replication made the 3Cpro an excellent target for antiviral intervention. In recent years, considerable efforts have been made in the development of antiviral compounds targeting this enzyme. To further facilitate the design of potent 3C protease inhibitors for therapeutic use, this review summarizes the biochemical and structural characterization conducted on HRV 3C protease along with the recent progress on the development of 3C protease inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.