Offline handwritten signature verification is one of the most prevalent and prominent biometric methods in many application fields. Siamese neural network, which can extract and compare the writers’ style features, proves to be efficient in verifying the offline signature. However, the traditional Siamese neural network fails to represent the writers’ writing style fully and suffers from low performance when the distribution of positive and negative handwritten signature samples is unbalanced. To address this issue, this study proposes a two-stage Siamese neural network model for accurate offline handwritten signature verification with two main ideas: (a) adopting a two-stage Siamese neural network to verify original and enhanced handwritten signatures simultaneously, and (b) utilizing the Focal Loss to deal with the extreme imbalance between positive and negative offline signatures. Experimental results on four challenging handwritten signature datasets with different languages demonstrate that compared with state-of-the-art models, our proposed model achieves better performance. Furthermore, this study tries to extend the proposed model to the Chinese signature dataset in the real environment, which is a significant attempt in the field of Chinese signature identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.