Scope
Hippo signaling is a crucial pathway in innate immune responses, but the relationship between food allergy and Hippo pathway is unknown. The aim of this work is to investigate the regulation of food allergy by Hippo pathway and reveal the molecular mechanisms.
Methods and results
Two food allergens tropomyosin and ovalbumin are used to challenge a mouse model and CMT93 intestinal epithelia cell model. The allergic responses and the activation of Hippo pathway are tested in these models. In the mouse model, both allergens trigged significant allergic responses, and Hippo pathway is suppressed after allergen challenge. In CMT93, both allergens upregulate the expression of allergic cytokines thymic stromal lymphopoietin, interleukin (IL)‐25, and IL‐33. In TAZ KD CMT93, the Hippo pathway is blocked, and the expression of allergenic cytokines are also suppressed.
Conclusions
Both in vivo and in vitro data demonstrate that the two food allergens suppressed Hippo pathway by downregulating TAZ expression, resulting in intestinal epithelia instability, and finally leading to hypersensitivity reactions. These findings provide potential therapeutic targets and molecular markers for food allergy, and provide dietary guidelines for allergenic individuals.
Food allergy is a worldwide food safety problem with increasing prevalence. Developing novel approaches for food allergy investigations is the basis for controlling food allergies. In this work, a 3-dimensional (3D) intestinal cell model was established to simulate the intestinal mucosal immune system. Gut epithelial cell line CMT93 was cultured in a transwell insert above dendritic cells (DCs) isolated from mouse spleen and stimulated by egg allergen ovalbumin (OVA), then the conditioned media of DCs was transferred to T cells isolated from mouse spleen. The allergy-related indexes of each cell type were determined by qPCR and flow cytometry. Then the TAZ gene was knocked down in the CMT93 cells and the role of the Hippo pathway in OVA-induced food allergy was investigated. The 3D intestinal cell model showed more significant and more specific allergic responses than conventional cell models and is more convenient to be manipulated than the mouse models. This model is an ideal tool for food allergy investigations and would facilitate studies in the field of intestinal mucosal immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.