Humicola insolens is an excellent producer of pH-neutral active, thermostable cellulases that find many industrial applications. In the present study, we developed an efficient Agrobacterium tumefaciens-mediated transformation system for H. insolens. We transformed plasmids carrying the promoter of the glyceraldehyde-3-phosphate dehydrogenase gene of H. insolens driving the transcription of genes encoding neomycin phosphotransferase, hygromycin B phosphotransferase, and enhanced green fluorescent protein. We optimized transformation efficiency to obtain over 300 transformants/106 conidia. T-DNA insertional mutagenesis was employed to generate an H. insolens mutant library, and we isolated a transformant termed T4 with enhanced cellulase and hemicellulase activities. The FPase, endoglucanase, cellobiohydrolase, β-glucosidase, and xylanase activities of T4, measured at the end of fermentation, were 60%, 440%, 320%, 41%, and 81% higher than those of the wild-type strain, respectively. We isolated the sequences flanking the T-DNA insertions and thus identified new genes potentially involved in cellulase and hemicellulase production. Our results show that it is feasible to use T-DNA insertional mutagenesis to identify novel candidate genes involved in cellulase production. This will be valuable when genetic improvement programs seeking to enhance cellulase production are planned, and will also allow us to gain a better understanding of the genetics of the thermophilic fungus H. insolens.
Trichoderma reesei (T. reesei) is well-known for its excellent ability to secret a large quantity of cellulase. However, unlike the endogenous proteins, little is known about the molecular mechanisms governing heterologous protein production. Herein, we focused on the integration loci and the secretory pathway, and investigated their combinatorial effects on heterologous gene expression in T. reesei using a glucose oxidase from Aspergillus niger as a model protein. Integration in the cel3c locus was more efficient than the cbh1 locus in expressing the AnGOx by increasing the transcription of AnGOx in the early stage. In addition, we discovered that interruption of the cel3c locus has an additional effect by increasing the expression of the secretory pathway component genes. Accordingly, overexpressing three secretory pathway component genes, that were snc1, sso2, and rho3, increased AnGOx expression in the cbh1 transformant but not in the cel3c transformant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.