Engineered cementitious composite (ECC) is a type of high-performance fibre-reinforced cementitious composite with good ductility and excellent crack control ability. It has attracted increasing attention as a structural repair material in severely corrosive environments. However, the strength improvement is limited when ECC is used alone for shear strengthening of existing reinforced concrete (RC) members, although its shear capacity is much higher than that of other brittle cementitious materials such as cement mortar. This study proposes a novel shear strengthening method for RC beams with both high load-carrying capacity and good durability through the combination of high-strength steel wire and an ECC layer. The shear behaviours of the beams were tested under static loading. The test results showed that the shear strength and the ultimate displacement were significantly improved through shear strengthening. A large number of fine cracks appeared on the ECC layer before the failure of the beams. The load-carrying capacity was reduced by pre-damage owing to the important role of the shear resistance of the concrete with respect to the total shear capacity. The shear strength of the strengthened beams cannot be accurately predicted by the current design code owing to the ignorance of the shear resistance of ECC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.