The pulsed dye laser (PDL) has a history of producing safe and effective clearance of dermal vascular lesions; however, non-ablative treatments of rhytids with 595nm PDL are seldom studied. The purpose of our research is to evaluate the changes of skin elasticity, histology and the amount of hydroxyproline after 595nm PDL non-ablative rejuvenation and to offer references for effective clinical treatments. Forty KM mice were used for this experiment. Laser parameters were as follows: an energy fluence of 8 to 12J/cm 2 , a pulse duration of 10ms, and a spot size of 7mm with 10% overlap. Skin elasticity was measured using Reviscometer ® RVM 600. Specimens were sectioned for hematoxylin-eosin and Van-Gieson staining, and dermal thickness was recorded in an ocular micrometer. The amount of hydroxyproline in the dermis was quantified by the biochemical method. No marked side effects such as blister and purpura were noted during laser treatments. New collagen synthesized with an improvement in the organization of collagen fibrils. The 12 J/cm 2 group improved skin elasticity by 31.7%, dermal thickness by 25.3% and the amount of hydroxyproline by 55.9%. There were the good correlations between dermal thickness and the amount of hydroxyproline. Therefore 595nm PDL non-ablative photo-rejuvenation is a safe and effective method for wrinkle reduction. And the energy level of 12 J/cm 2 has the greatest effect in improving skin mechanical properties and accelerating new collagen formation.
A novel confocal endoscopic imaging system is designed for imaging thick sample. The lateral and axial detected image intensity is deduced and calculated based on point spread function (PSF). The analysis of influence of pinhole and fiber on resolution is given. Our researches show that the lateral resolution improvement is much more sensitive to pinhole size than the axial resolution. Confocal system has narrower half width at half maximum (HWHM) and higher lateral and axial resolution for smaller pinhole. At last a criterion for pinhole size is introduced first of all to ensure confocal imaging and maximize signal-to-noise ratio, which is very helpful in the practical design of confocal endoscopic imaging system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.