The thermophoresis of suspended particles in a fluid is usually from high to low temperature. In the present paper, the negative thermophoresis (from low to high temperature) of nanoparticles in liquids is investigated by molecular dynamics simulations. It is found that the solid-liquid intermolecular coupling strength has a significant effect on the direction and magnitude of the thermophoretic force. Positive thermophoresis can be observed for strong couplings, while negative thermophoresis emerges for weak couplings. The negative thermophoresis is induced by the density gradient which pushes the particle from high to low density. Based on the analysis of the potential mean force of the solid-liquid interfacial layer, it is revealed that the switch between positive and negative thermophoresis is associated with the sign change of the averaged potential mean force for the interfacial layer. Therefore, the sign of the averaged potential mean force can be used as a criterion to predict the occurrence of negative thermophoresis. The results of this work provide insights for the microscopic manipulation of nanoparticles.
The thermophoresis of nanoparticles suspended in gas is investigated in the transition regime by molecular dynamics simulations. It is found that there exists significant discrepancy between the simulation results and the theoretical predictions for the thermophoretic force, which is attributed to the adsorption of gas molecules on nanoparticles and the gas–particle non-rigid body collisions. By using the effective particle radius, the simulation results and Talbot et al.'s equation could agree with each other in the transition regime. In addition, the effect of the finite system size of the molecular dynamics simulations is non-negligible, and the simulation results modified by effective particle radius can coincide with Phillips' equation quite well. Therefore, for particles of a few nanometers, the non-rigid body collision effect and the adsorption of gas molecules and the effective radius of the nanoparticle under strong gas–particle coupling should be taken into account in the theoretical model. The investigation presented in this paper provides guidance for the application of nanoparticles in aerosol science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.