Given the lack of accurate parameter values in discrete element simulation of sweet potato seedling mechanized recovery, a direct measurement and virtual calibration method was used to study the Discrete Element Method (DEM) simulation parameters of broken sweet potato stems and leaves. The intrinsic parameters, collision recovery coefficient and static friction coefficient of broken seedlings were acquired by physical experiments. Different parameter combinations were designed for DEM simulation. The intrinsic parameters of sweet potato leaves and other unmeasurable DEM simulation parameters were determined by stacking angle optimization simulation. Plackett-Burman test shows that the static friction coefficients of stem-stem and stem-steel and the rolling friction coefficients of stem-stem and stem-leaf all significantly influence the accumulation angle. The parameters that significantly influence the stacking angle of broken seedlings were sent to steepest ascent test and Box-Behnken test. The average stacking angle of 40.51° and the relative error of 0.972% indicate it feasible to calibrate DEM parameters by physical test and optimization simulation and the calibrated parameters can be used in DEM simulation of broken sweet potato stems and leaves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.