[Purpose] The few studies conducted on subacute stroke patients have focused only on gait function improvement. This study therefore aimed to confirm the effect of balance training with additional motor imagery on balance and gait improvement in subacute stroke patients. [Subjects and Methods] Participants were divided into an experimental or control group. The experimental group received balance training for 20 minutes/day with mental imagery for 10 minutes/day, three days/week, for four weeks. The control group received only balance training for 30 minutes. Before and after the 12 sessions, balance and gait ability were assessed by the researcher and a physical therapist. [Results] After completion of the 4-week intervention, Berg Balance Scale, Timed Up and Go test, Functional Reach Test, and Four Square Step test scores significantly increased in the experimental group. In the control group, Berg Balance Scale and Functional Reach Test scores significantly improved. Changes in the Timed Up and Go test, Functional Reach Test, and Four Square Step Test scores after intervention were significantly higher in the experimental than in the control group. [Conclusion] Specific balance training with additional motor imagery may result in better rehabilitation outcomes of gait and balance ability than balance training alone.
[Purpose] The aim of this study was to systematically investigate the effects of robot-assisted therapy on the upper extremity in acute and subacute stroke patients. [Subjects and Methods] The papers retrieved were evaluated based on the following inclusion criteria: 1) design: randomized controlled trials; 2) population: stroke patients 3) intervention: robot-assisted therapy; and 4) year of publication: May 2012 to April 2016. Databased searched were: EMBASE, PubMed and COCHRAN databases. The Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. [Results] Of the 637 articles searched, six studies were included in this systematic review. The PEDro scores range from 7 to 9 points. [Conclusion] This review confirmed that the robot-assisted therapy with three-dimensional movement and a high degree of freedom had positive effects on the recovery of upper extremity motor function in patients with early-stage stroke. We think that the robot-assisted therapy could be used to improve upper extremity function for early stage stroke patients in clinical setting.
Stroke patients live with balance and walking dysfunction. Walking is the most important factor for independent community activities. The purpose of this study was to investigate the effect of a community walking training program (CWTP) within the real environment on walking function and social participation in chronic stroke patients. Twenty-two stroke patients (13 male, 50.45 years old, post stroke duration 231.64 days) were randomly assigned to either the CWTP group or the control group. All subjects participated in the same standard rehabilitation program consisting of physical and occupational therapy for 60 min per day, five times a week, for four weeks. In addition, the CWTP group participated in CWTP for 30 min per day, five times a week, for four weeks. Walking function was assessed using the 10-m walk test (measurement for 10-meter walking speed), 6-min walk assessment (measurement of gait length for 6-minutes), and community gait assessment. Social participation was assessed using a social participation domain of stroke impact scale. In walking function, greater improvement was observed in the CWTP group compared with the control group (P < 0.05). In addition, social participation improved more in the CWTP group compared with the control group (P < 0.05). These findings demonstrate the efficacy of CWTP on walking function and social participation in chronic stroke patients. Therefore, we suggest that CWTP within the real environment may be an effective method for improving walking function and social participation of chronic stroke patients when added to standard rehabilitation.
[Purpose] The purpose of the study was to determine the effects of balance training with Space Balance 3D, which is a computerized measurement and visual feedback balance assessment system, on balance and mobility in acute stroke patients. [Subjects and Methods] This was a randomized controlled trial in which 52 subjects were assigned randomly into either an experimental group or a control group. The experimental group, which contained 26 subjects, received balance training with a Space Balance 3D exercise program and conventional physical therapy interventions 5 times per week during 3 weeks. Outcome measures were examined before and after the 3-week interventions using the Berg Balance Scale (BBS), Timed Up and Go (TUG) test, and Postural Assessment Scale for Stroke Patients (PASS). The data were analyzed by a two-way repeated measures ANOVA using SPSS 19.0. [Results] The results revealed a nonsignificant interaction effect between group and time period for both groups before and after the interventions in the BBS score, TUG score, and PASS score. In addition, the experimental group showed more improvement than the control group in the BBS, TUG and PASS scores, but the differences were not significant. In the comparisons within the groups by time, both groups showed significant improvement in BBS, TUG, and PASS scores. [Conclusion] The Space Balance 3D training with conventional physical therapy intervention is recommended for improvement of balance and mobility in acute stroke patients.
The abdominal muscles play a role in trunk balance. Abdominal muscle thickness is asymmetrical in stroke survivors, who also have decreased respiratory muscle function. We compared the thickness of the abdominal muscles between the affected and less affected sides in stroke survivors. In addition, the relationship between respiratory muscle function and trunk balance was evaluated. Chronic stroke patients (18 men, 15 women; mean age, 58.94 ± 12.30 years; Mini-Mental Status Examination score ≥ 24) who could sit without assist were enrolled. Abdominal muscle thickness during rest and contraction was measured with ultrasonography, and the thickening ratio was calculated. Respiratory muscle function assessment included maximum respiratory pressure, peak flow, and air volume. Trunk function was evaluated using the Trunk Impairment Scale, and trunk balance was estimated based on the center of pressure velocity and path length within the limit of stability in sitting posture. Abdominal muscles were significantly thinner on the affected side, and the thickening ratio was lower in the affected side (P < 0.05). In addition, the higher thickening ratio of the affected side showed significant relationship with higher trunk function. Moreover, higher respiratory muscle function was significantly correlated with higher level of trunk function and balance in stroke patients (P < 0.05). Thus, chronic stroke survivors have decreased abdominal muscle thickness on the affected side, and respiratory muscle function has positive correlation with trunk function and balance. We propose that respiratory muscle training should be included as part of trunk balance training in chronic stroke patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.