Metric learning based methods have attracted extensive interests in recommender systems. Current methods take the user-centric way in metric space to ensure the distance between user and negative item to be larger than that between the current user and positive item by a fixed margin. While they ignore the relations among positive item and negative item. As a result, these two items might be positioned closely, leading to incorrect results. Meanwhile, different users usually have different preferences, the fixed margin used in those methods can not be adaptive to various user biases, and thus decreases the performance as well. To address these two problems, a novel Symmetic Metric Learning with adaptive margin (SML) is proposed. In addition to the current user-centric metric, it symmetically introduces a positive item-centric metric which maintains closer distance from positive items to user, and push the negative items away from the positive items at the same time. Moreover, the dynamically adaptive margins are well trained to mitigate the impact of bias. Experimental results on three public recommendation datasets demonstrate that SML produces a competitive performance compared with several state-of-the-art methods.
Scripts represent knowledge of event sequences that can help text understanding. Script event prediction requires to measure the relation between an existing chain and the subsequent event. The dominant approaches either focus on the effects of individual events, or the influence of the chain sequence. However, only considering individual events will lose much semantic relations within the event chain, and only considering the sequence of the chain will introduce much noise. With our observations, both the individual events and the event segments within the chain can facilitate the prediction of the subsequent event. This paper develops self attention mechanism to focus on diverse event segments within the chain and the event chain is represented as a set of event segments. We utilize the event-level attention to model the relations between subsequent events and individual events. Then, we propose the chain-level attention to model the relations between subsequent events and event segments within the chain. Finally, we integrate event-level and chain-level attentions to interact with the chain to predict what happens next. Comprehensive experiment results on the widely used New York Times corpus demonstrate that our model achieves better results than other state-of-the-art baselines by adopting the evaluation of Multi-Choice Narrative Cloze task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.