Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that downregulates low-density lipoprotein (LDL) receptor (LDL-R) levels on the surface of hepatocytes, resulting in decreased clearance of LDL-cholesterol (LDL-C). Phenotypic screening of a small-molecule compound collection was used to identify an inhibitor of PCSK9 secretion, (R)-N-(isoquinolin-1-yl)-3-(4-methoxyphenyl)-N-(piperidin-3-yl)propanamide (R-IMPP), which was shown to stimulate uptake of LDL-C in hepatoma cells by increasing LDL-R levels, without altering levels of secreted transferrin. Systematic investigation of the mode of action revealed that R-IMPP did not decrease PCSK9 transcription or increase PCSK9 degradation, but instead caused transcript-dependent inhibition of PCSK9 translation. In support of this surprising mechanism of action, we found that R-IMPP was able to selectively bind to human, but not E. coli, ribosomes. This study opens a new avenue for the development of drugs that modulate the activity of target proteins by mechanisms involving inhibition of eukaryotic translation.
Dysregulation of ceramide synthesis has been associated with metabolic disorders such as atherosclerosis and diabetes. We examined the changes in lipid homeostasis and gene expression in Huh7 hepatocytes when the synthesis of ceramide is perturbed by knocking down serine pal mitoyltransferase subunits 1, 2, and 3 (SPTLC123) or dihydroceramide desaturase 1 (DEGS1). Although knocking down all SPTLC subunits is necessary to reduce total ceramides significantly, depleting DEGS1 is sufficient to produce a similar outcome. Lipidomic analysis of distribution and speciation of multiple lipid classes indicates an increase in phospholipids in SPTLC123-silenced cells, whereas DEGS1 depletion leads to the accumulation of sphingolipid intermediates, free fatty acids, and diacylglycerol. When cer amide synthesis is disrupted, the transcriptional profiles indicate inhibition in biosynthetic processes, downregulation of genes involved in general endomembrane traffi cking, and upregulation of endocytosis and endosomal recycling. SPTLC123 silencing strongly affects the expression of genes involved with lipid metabolism. Changes in amino acid, sugar, and nucleotide metabolism, as well as vesicle trafficking between organelles, are more prominent in DEGS1-silenced cells. These studies are the first to provide a direct and comprehensive understanding at the lipidomic and transcriptomic levels of how Huh7 hepatocytes respond to changes in the inhibition of ceramide synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.