Cynomolgus monkeys as nonhuman primates are valuable animal models because they have a high level of human gene homology. There are many reference values for hematology and biochemistry of Cynomolgus monkeys that are needed for proper clinical diagnosis and biomedical research conduct. The body weight information and blood type are also key success factors in allogeneic or xenogeneic models. Moreover, the biological parameters could be different according to the origin of the Cynomolgus monkey. However, there are limited references provided, especially of Cambodia origin. In this study, we measured average body weight of 2,518 Cynomolgus monkeys and analyzed hematology and serum biochemistry using 119 males, and determined blood types in 642 monkeys with Cambodia origin. The average body weight of male Cynomolgus monkeys were 2.56±0.345 kg and female group was 2.43±0.330 kg at the age from 2 to 3 years. The male group showed relatively sharp increased average body weight from the 3 to 4 age period compared to the female group. In hematology and biochemistry, it was found that most of the data was similar when compared to other references even though some results showed differences. The ABO blood type result showed that type A, B, AB, and O was approximately 15.6, 33.3, 44.2, and 6.9%, respectively. The main blood type in this facility was B and AB. These biological background references of Cambodia origin could be used to provide important information to researchers who are using them in their biomedical research.
Olefin/paraffin separation is an important and challenging issue because the two molecules have similar physicochemical properties. Although a couple of olefin adsorbents have been developed by introducing inorganic nanoparticles into metal-organic frameworks (MOFs), there has been no study on the development of an olefin adsorbent by introducing a certain organic functional group into a MOF. In this study, we posited that azo compounds could offer olefin/paraffin selectivity. We have revealed using first-principles calculations that the simplest aromatic azo compound (azobenzene, Azob) has an unusual propylene/propane selectivity due to special electrostatic interactions between Azob and propylene molecules. On the basis of this interesting discovery, we have synthesized a novel propylene adsorbent, MIL-101(Cr)_DAA, by grafting 4,4'-diaminoazobenzene (DAA) into open metal sites in a mesoporous MIL-101(Cr). Remarkably, MIL-101(Cr)_DAA exhibited enhanced propylene/propane selectivity as well as considerably higher propylene heat of adsorption compared to pristine MIL-101(Cr) while maintaining the high working capacity of MIL-101(Cr). This clearly indicates that azo compounds when introduced into MOFs can provide propylene selectivity. Moreover, MIL-101(Cr)_DAA showed good CH/CH separation and easy regeneration performances from packed-bed breakthrough experiments and retained its propylene adsorption capacity even after exposure to air for 12 h. As far as we know, this is the first study that improves the olefin selectivity of MOF by postsynthetically introducing an organic functional group.
Liquefied natural gas (LNG) gasification coupled with adsorbed natural gas (ANG) charging (LNG-ANG coupling) is an emerging strategy for efficient delivery of natural gas. However, the potential of LNG-ANG to attain the advanced research projects agency-energy (ARPA-E) target for onboard methane storage has not been fully investigated. In this work, large-scale computational screening is performed for 5446 metal-organic frameworks (MOFs), and over 193 MOFs whose methane working capacities exceed the target (315 cm 3 (STP) cm −3 ) are identified. Furthermore, structure-performance relationships are realized under the LNG-ANG condition using a machine learning method. Additional molecular dynamics simulations are conducted to investigate the effects of the structural changes during temperature and pressure swings, further narrowing down the materials, and two synthetic targets are identified. The synthesized DUT-23(Cu) and DUT-23(Co) show higher working capacities (≈373 cm 3 (STP) cm −3 ) than that of any other porous material under ANG or LNG-ANG conditions, and excellent stability during cyclic LNG-ANG operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.