In the big data era, learning-based techniques have attracted more and more attentions in many industry areas. The sport injury prediction is one of the most critical issues in data analysis of soccer teams.However, learning-based methods have not been widely used due to the poor data quality and computational capacity. In this paper, we propose a learning-based model to forecast sport injuries according to the data from various information systems. We first reduce the attributes that have significant impact on the injury risk by using learning-based methods.Then, we provide an algorithm based on the random forest method to prevent the over-fitting problem. We have evaluated the proposed model with the real-world data. The experimental results show that our model works efficiently and achieves low error rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.