With the acceleration of the Belt and Road Initiative, Poland–China agricultural trade has increasingly strengthened, but there is little exchange or cooperation in agricultural machinery. China’s agricultural UAV industry has flourished over the past 7 years. In China, by using typical food crops and economic crops to control diseases and pests, agricultural drones can reduce the use of fertilizer, pesticides, and water, improve operational efficiency, open up new markets through the ‘sale + services’ mode, and reduce production costs and labor shortages. The spraying of agricultural UAVs and related pest-disease-defense services applied in China are also suitable for Poland’s decentralized, small-scale production modes. By learning from China’s development progress of precision-agriculture aviation, Poland can develop 5th-generation (5G) unmanned intelligent organic farms from traditional organic agriculture, use agricultural UAVs in the spraying of Plant Protection Products (PPPs), and carry out special protection or loss management on typical fruits. Furthermore, by building its own spraying system, aviation industry, and service team, Poland can realize resource optimization, technological empowerment, application expansion, and industrial innovation. Therefore, this paper focuses on the development experience of Chinese agricultural UAVs and discusses its enlightenment to the precision-agriculture aviation application of Poland.
During the operation of agricultural unmanned aerial vehicles (UAVs) in orchards, the presence of power poles and wires pose a serious threat to flight safety, and can even lead to crashes. Due to the difficulty of directly detecting wires, this research aimed to quickly and accurately detect wire poles, and proposed an improved Yolov5s deep learning object detection algorithm named Yolov5s-Pole. The algorithm enhances the model’s generalization ability and robustness by applying Mixup data augmentation technique, replaces the C3 module with the GhostBottleneck module to reduce the model’s parameters and computational complexity, and incorporates the Shuffle Attention (SA) module to improve its focus on small targets. The results show that when the improved Yolov5s-Pole model was used for detecting poles in orchards, its accuracy, recall, and mAP@50 were 0.803, 0.831, and 0.838 respectively, which increased by 0.5%, 10%, and 9.2% compared to the original Yolov5s model. Additionally, the weights, parameters, and GFLOPs of the Yolov5s-Pole model were 7.86 MB, 3,974,310, and 9, respectively. Compared to the original Yolov5s model, these represent compression rates of 42.2%, 43.4%, and 43.3%, respectively. The detection time for a single image using this model was 4.2 ms, and good robustness under different lighting conditions (dark, normal, and bright) was demonstrated. The model is suitable for deployment on agricultural UAVs’ onboard equipment, and is of great practical significance for ensuring the efficiency and flight safety of agricultural UAVs.
The leaf area index (LAI) is an important growth indicator used to assess the health status and growth of citrus trees. Although LAI estimation based on unmanned aerial vehicle (UAV) platforms has been widely used for field crops, mainly focusing on food crops, less research has been reported on the application to fruit trees, especially citrus trees. In addition, most studies have used single-modal data for modeling, but some studies have shown that multi-modal data can be effective in improving experimental results. This study utilizes data collected from a UAV platform, including RGB images and point cloud data, to construct single-modal regression models named VoVNet (using RGB data) and PCNet (using point cloud data), as well as a multi-modal regression model called VPNet (using both RGB data and point cloud data). The LAI of citrus trees was estimated using deep neural networks, and the results of two experimental hyperparameters (loss function and learning rate) were compared under different parameters. The results of the study showed that VoVNet had Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-Squared (R2) of 0.129, 0.028, and 0.647, respectively. In comparison, PCNet decreased by 0.051 and 0.014 to 0.078 and 0.014 for MAE and MSE, respectively, while R2 increased by 0.168 to 0.815. VPNet decreased by 0% and 42.9% relative to PCNet in terms of MAE and MSE to 0.078 and 0.008, respectively, while R2 increased by 5.6% to 0.861. In addition, the use of loss function L1 gave better results than L2, while a lower learning rate gave better results. It is concluded that the fusion of RGB data and point cloud data collected by the UAV platform for LAI estimation is capable of monitoring citrus trees’ growth process, which can help farmers to track the growth condition of citrus trees and improve the efficiency and quality of orchard management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.