Mediated through the combined action of STIM proteins and Orai channels, store-operated Ca2+ entry (SOCE) functions ubiquitously among different cell types. The existence of multiple STIM and Orai genes has made it difficult to assign specific roles of each STIM and Orai homolog in mediating Ca2+ signals. Using CRISPR/Cas9 gene editing tools, we generated cells with both STIM or all three Orai homologs deleted and directly monitored store Ca2+ and Ca2+ signals. We found that unstimulated, SOCE null KO cells still retain 50~70% of ER Ca2+ stores of wildtype (wt) cells. After brief exposure to store-emptying conditions, acute refilling of ER Ca2+ stores was totally blocked in KO cells. However, after 24 h in culture, stores were eventually refilled. Thus, SOCE is critical for immediate refilling of ER Ca2+ but is dispensable for the maintenance of long-term ER Ca2+ homeostasis. Using the Orai null background triple Orai-KO cells, we examined the plasma membrane translocation properties of a series of truncated STIM1 variants. FRET analysis reveals that, even though PM tethering of STIM1 expedites the activation of STIM1 by facilitating its oligomerization, migration, and accumulation in ER-PM junctions, it is not required for the conformational switch, oligomerization, and clustering of STIM1. Even without overt puncta formation at ER-PM junctions, STIM11–491 and STIM11–666 could still rescue SOCE when expressed in STIM KO cells. Thus, ER-PM trapping and clustering of STIM molecules only facilitates the process of SOCE activation, but is not essential for the activation of Orai channels.Electronic supplementary materialThe online version of this article (10.1007/s00424-018-2165-5) contains supplementary material, which is available to authorized users.
The pathogenic fungus Candida albicans switches from yeast growth to filamentous growth in response to genotoxic stresses, in which phosphoregulation of the checkpoint kinase Rad53 plays a crucial role. Here we report that the Pph3/Psy2 phosphatase complex, known to be involved in Rad53 dephosphorylation, is required for cellular responses to the DNA-damaging agent methyl methanesulfonate (MMS) but not the DNA replication inhibitor hydroxyurea (HU) in C. albicans. Deletion of either PPH3 or PSY2 resulted in enhanced filamentous growth during MMS treatment and continuous filamentous growth even after MMS removal. Moreover, during this growth, Rad53 remained hyperphosphorylated, MBF-regulated genes were downregulated, and hypha-specific genes were upregulated. We have also identified S461 and S545 on Rad53 as potential dephosphorylation sites of Pph3/Psy2 that are specifically involved in cellular responses to MMS. Therefore, our studies have identified a novel molecular mechanism mediating DNA damage response to MMS in C. albicans.
Summary Follicular T helper (TFH) cells are specialized T cells that support B cells, which are essential for humoral immunity. TFH cells express the transcription factor B‐cell lymphoma 6 (Bcl‐6), chemokine (C‐X‐C motif) receptor (CXCR) 5, the surface receptors programmed cell death protein 1 (PD‐1) and inducible T‐cell costimulator (ICOS), the cytokine IL‐21 and other molecules. The activation, proliferation and differentiation of TFH cells are closely related to dynamic changes in cellular metabolism. In this review, we summarize the progress made in understanding the development and functional differentiation of TFH cells. Specifically, we focus on the regulatory mechanisms of TFH cell functional differentiation, including regulatory signalling pathways and the metabolic regulatory mechanisms of TFH cells. In addition, TFH cells are closely related to immune‐associated diseases, including infections, autoimmune diseases and cancers.
Rfa2 is a ssDNA (single-stranded DNA)-binding protein that plays an important role in DNA replication, recombination and repair. Rfa2 is regulated by phosphorylation, which alters its protein–protein interaction and protein–DNA interaction. In the present study, we found that the Pph3–Psy2 phosphatase complex is responsible for Rfa2 dephosphorylation both during normal G1-phase and under DNA replication stress in Candida albicans. Phosphorylated Rfa2 extracted from pph3Δ or psy2Δ G1 cells exhibited diminished binding affinity to dsDNA (double-stranded DNA) but not to ssDNA. We also discovered that Cdc28 (cell division cycle 28) and Mec1 are responsible for Rfa2 phosphorylation in G1-phase and under DNA replication stress respectively. Moreover, MS revealed that the domain of Rfa2 that was phosphorylated in G1-phase differed from that phosphorylated under the stress conditions. The results of the present study imply that differential phosphorylation plays a crucial role in RPA (replication protein A) regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.