The two-dimensional site frequency spectrum (2D SFS) was investigated to describe the intra-allelic variability (IAV) maintained within a derived allele (D) group that has undergone an incomplete selective sweep against an ancestral allele group. We observed that recombination certainly muddles the ancestral relationships of allelic lineages between the two allele groups; however, the 2D SFS reveals intriguing signatures of recombination as well as the genealogical structure of the D group, particularly the size of a mutation and the time to the most recent common ancestor (TMRCA). Coalescent simulations were performed to achieve powerful and robust 2D SFS-based statistics with special reference to accurate evaluation of IAV, significance of recombination effects, and distinction between hard and soft selective sweeps. These studies were extended to a case wherein an incomplete selective sweep is no longer in progress and ceased in the recent past. The 2D SFS-based method was applied to 100 intronic linkage disequilibrium regions randomly chosen from the East Asian population of modern humans to examine the P value distributions of the summary statistics under the null hypothesis of neutrality in a nonequilibrium demographic model. We argue that about 96% of intronic variants are non-adaptive with a 10% false discovery rate. Furthermore, this method was applied to six genomic regions in Eurasian populations that were claimed to have experienced recent selective sweeps. We found that two of these genomic regions did not have significant signals of selective sweeps, but the remaining four had undergone hard and soft sweeps and were dated, in terms of TMRCA, after the major out-of-Africa dispersal of modern humans.
RIG-I-like receptors (retinoic acid-inducible gene-I-like receptors, or RLRs) are family of pattern-recognition receptors for RNA viruses, consisting of three members: retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). To understand the role of RLRs in bird evolution, we performed molecular evolutionary analyses on the coding genes of avian RLRs using filtered predicted coding sequences from 62 bird species. Among the three RLRs, conservation score and dN/dS (ratio of nonsynonymous substitution rate over synonymous substitution rate) analyses indicate that avian MDA5 has the highest conservation level in the helicase domain but a lower level in the caspase recruitment domains (CARDs) region, which differs from mammals; LGP2, as a whole gene, has a lower conservation level than RIG-I or MDA5. We found evidence of positive selection across all bird lineages in RIG-I and MDA5 but only on the stem lineage of Galliformes in LGP2, which could be related to the loss of RIG-I in Galliformes. Analyses also suggest that selection relaxation may have occurred in LGP2 during the middle of bird evolution and the CARDs region of MDA5 contains many positively selected sites, which might explain its conservation level. Spearman’s correlation test indicates that species-to-ancestor dN/dS of RIG-I shows a negative correlation with endogenous retroviral abundance in bird genomes, suggesting the possibility of interaction between immunity and endogenous retroviruses during bird evolution.
Human immunoglobulin G (IgG) molecules, IgG1, IgG2 and IgG3, exhibit substantial inter-individual variation in their constant heavy chain regions, as discovered by serological methods. This polymorphism is encoded by the IGHG1, IGHG2, and IGHG3 genes and may influence antibody function. We sequenced the coding fragments of these genes in 95 European Americans, 94 African Americans, and 94 Black South Africans. Striking differences were observed between the population groups, including extremely low amino acid sequence variation in IGHG1 among South Africans, and higher IGHG2 and IGHG3 diversity in individuals of African descent compared to individuals of European descent. Molecular definition of the loci illustrates a greater level of allelic polymorphism than previously described, including the presence of common IGHG2 and IGHG3 variants that were indistinguishable serologically. Comparison of our data with the 1000 Genome Project sequences indicates overall agreement between the datasets, although some inaccuracies in the 1000 Genomes Project are likely. These data represent the most comprehensive analysis of IGHG polymorphisms across major populations, which can now be applied to deciphering their functional impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.