Background As the world’s largest coal producer, China was accounted for about 46% of global coal production. Among present coal mining risks, methane gas (called gas in this paper) explosion or ignition in an underground mine remains ever-present. Although many techniques have been used, gas accidents associated with the complex elements of underground gassy mines need more robust monitoring or warning systems to identify risks. This paper aimed to determine which single method between the PCA and Entropy methods better establishes a responsive weighted indexing measurement to improve coal mining safety. Methods Qualitative and quantitative mixed research methodologies were adopted for this research, including analysis of two case studies, correlation analysis, and comparative analysis. The literature reviewed the most-used multi-criteria decision making (MCDM) methods, including subjective methods and objective methods. The advantages and disadvantages of each MCDM method were briefly discussed. One more round literature review was conducted to search publications between 2017 and 2019 in CNKI. Followed two case studies, correlation analysis and comparative analysis were then conducted. Research ethics was approved by the Shanxi Coking Coal Group Research Committee. Results The literature searched a total of 25,831publications and found that the PCA method was the predominant method adopted, and the Entropy method was the second most widely adopted method. Two weighting methods were compared using two case studies. For the comparative analysis of Case Study 1, the PCA method appeared to be more responsive than the Entropy. For Case Study 2, the Entropy method is more responsive than the PCA. As a result, both methods were adopted for different cases in the case study mine and finally deployed for user acceptance testing on 5 November 2020. Conclusions The findings and suggestions were provided as further scopes for further research. This research indicated that no single method could be adopted as the better option for establishing indexing measurement in all cases. The practical implication suggests that comparative analysis should always be conducted on each case and determine the appropriate weighting method to the relevant case. This research recommended that the PCA method was a dimension reduction technique that could be handy for identifying the critical variables or factors and effectively used in hazard, risk, and emergency assessment. The PCA method might also be well-applied for developing predicting and forecasting systems as it was sensitive to outliers. The Entropy method might be suitable for all the cases requiring the MCDM. There is also a need to conduct further research to probe the causal reasons why the PCA and Entropy methods were applied to each case and not the other way round. This research found that the Entropy method provides higher accuracy than the PCA method. This research also found that the Entropy method demonstrated to assess the weights of the higher dimension dataset was higher sensitivity than the lower dimensions. Finally, the comprehensive analysis indicates a need to explore a more responsive method for establishing a weighted indexing measurement for warning applications in hazard, risk, and emergency assessments.
This research aims to explore the multi-focus group method as an effective tool for systematically eliciting business requirements for business information system (BIS) projects. During the COVID-19 crisis, many businesses plan to transform their businesses into digital businesses. Business managers face a critical challenge: they do not know much about detailed system requirements and what they want for digital transformation requirements. Among many approaches used for understanding business requirements, the focus group method has been used to help elicit BIS needs over the past 30 years. However, most focus group studies about research practices mainly focus on a particular disciplinary field, such as social, biomedical, and health research. Limited research reported using the multi-focus group method to elicit business system requirements. There is a need to fill this research gap. A case study is conducted to verify that the multi-focus group method might effectively explore detailed system requirements to cover the Case Study business’s needs from transforming the existing systems into a visual warning system. The research outcomes verify that the multi-focus group method might effectively explore the detailed system requirements to cover the business’s needs. This research identifies that the multi-focus group method is especially suitable for investigating less well-studied, no previous evidence, or unstudied research topics. As a result, an innovative visual warning system was successfully deployed based on the multi-focus studies for user acceptance testing in the Case Study mine in Feb 2022. The main contribution is that this research verifies the multi-focus group method might be an effective tool for systematically eliciting business requirements. Another contribution is to develop a flowchart for adding to Systems Analysis & Design course in information system education, which may guide BIS students step by step on using the multi-focus group method to explore business system requirements in practice.
Among all the gas disasters, gas concentration exceeding the threshold limit value (TLV) has been the leading cause of accidents. However, most systems still focus on exploring the methods and framework for avoiding reaching or exceeding TLV of the gas concentration from viewpoints of impacts on geological conditions and coal mining working-face elements. The previous study developed a Trip-Correlation Analysis Theoretical Framework and found strong correlations between gas and gas, gas and temperature, and gas and wind in the gas monitoring system. However, this framework's effectiveness must be examined to determine whether it might be adopted in other coal mine cases. This research aims to explore a proposed verification analysis approach—First-round—Second-round—Verification round (FSV) analysis approach to verify the robustness of the Trip-Correlation Analysis Theoretical Framework for developing a gas warning system. A mixed qualitative and quantitative research methodology is adopted, including a case study and correlational research. The results verify the robustness of the Triple-Correlation Analysis Theoretical Framework. The outcomes imply that this framework is potentially valuable for developing other warning systems. The proposed FSV approach can also be used to explore data patterns insightfully and offer new perspectives to develop warning systems for different industry applications.
This research aims to use a proposed verification analysis approach -First-round – Second-round – Verification round (FSV) analysis approach to verify the robustness of the Trip-Correlation Analysis Theoretical Framework for developing a gas warning system. A mixed qualitative and quantitative research methodology is adopted, including a case study and correlational research. Our previous work found strong correlations between gas, temperature, and wind in the gas morning system. This research verifies the robustness of the Triple-Correlation Analysis Theoretical Framework, which integrating data on temperature and wind into the gas can improve warning systems’ sensitivity and reduce the incidence of explosions. The outcomes imply that Trip-Correlation Analysis Theoretical Framework is potentially valuable for developing other warning systems. The proposed FSV approach could be adopted for exploring data patterns insightfully to offer new perspectives to develop warning systems for different industry applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.