The coronavirus disease 2019 (COVID‐19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) was identified in December 2019 and has subsequently spread worldwide. Currently, there is no effective method to cure COVID‐19. Mesenchymal stromal cells (MSCs) may be able to effectively treat COVID‐19, especially for severe and critical patients. Menstrual blood‐derived MSCs have recently received much attention due to their superior proliferation ability and their lack of ethical problems. Forty‐four patients were enrolled from January to April 2020 in a multicenter, open‐label, nonrandomized, parallel‐controlled exploratory trial. Twenty‐six patients received allogeneic, menstrual blood‐derived MSC therapy, and concomitant medications (experimental group), and 18 patients received only concomitant medications (control group). The experimental group was treated with three infusions totaling 9 × 10 7 MSCs, one infusion every other day. Primary and secondary endpoints related to safety and efficacy were assessed at various time points during the 1‐month period following MSC infusion. Safety was measured using the frequency of treatment‐related adverse events (AEs). Patients in the MSC group showed significantly lower mortality (7.69% died in the experimental group vs 33.33% in the control group; P = .048). There was a significant improvement in dyspnea while undergoing MSC infusion on days 1, 3, and 5. Additionally, SpO 2 was significantly improved following MSC infusion, and chest imaging results were improved in the experimental group in the first month after MSC infusion. The incidence of most AEs did not differ between the groups. MSC‐based therapy may serve as a promising alternative method for treating severe and critical COVID‐19.
AimsAn ongoing outbreak of 2019 novel coronavirus (SARS-CoV-2) diseases (COVID-19) has been spreading in multiple countries. One of the reasons for the rapid spread is that the virus can be transmitted from infected individuals without symptoms. Revealing the pathological features of early phase COVID-19 pneumonia is important to the understanding of its pathogenesis. The aim of this study was to explore pulmonary pathology of early phase COVID-19 pneumonia in a patient with a benign lung lesion. Methods and resultsWe analyzed the pathological changes of lung tissue from a 55-year-old female patient with early phase SARS-CoV-2 infection. In this case, right lower lobectomy was performed for a benign pulmonary nodule. Detailed clinical, laboratory and radiological data were also described. This case was confirmed to have preoperative SARS-CoV-2 infection by real-time RT-PCR and RNA in situ hybridization on surgically removed lung tissues. Histologically, COVID-19 pneumonia was characterized by exudative inflammation. The closer to the visceral pleura, the more severe the exudation of monocytes and lymphocytes. Perivascular inflammatory infiltration, intraalveolar multinucleated giant cells, pneumocyte hyperplasia and intracytoplasmic viral-like inclusion bodies were seen. However, fibrinous exudate and hyaline membrane formation, which were typical pulmonary features of SARS pneumonia, were not evident in this case. Immunohistochemical staining results showed that an abnormal accumulation of CD4+ helper T lymphocytes and CD163+ M2 macrophages in the lung tissue. Accepted ArticleThis article is protected by copyright. All rights reserved ConclusionThe results highlighted the pulmonary pathological changes of early phase SARS-CoV-2 infection and suggested a role of immune dysfunction in the pathogenesis of COVID-19 pneumonia.
The coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 was identified in December 2019. The symptoms include fever, cough, dyspnea, early symptom of sputum, and acute respiratory distress syndrome (ARDS). Mesenchymal stem cell (MSC) therapy is the immediate treatment used for patients with severe cases of COVID-19. Herein, we describe two confirmed cases of COVID-19 in Wuhan to explore the role of MSC in the treatment of COVID-19. MSC transplantation increases the immune indicators (including CD4 and lymphocytes) and decreases the inflammation indicators (interleukin-6 and C-reactive protein). High-flow nasal cannula can be used as an initial support strategy for patients with ARDS. With MSC transplantation, the fraction of inspired O 2 (FiO 2) of the two patients gradually decreased while the oxygen saturation (SaO 2) and partial pressure of oxygen (PO 2) improved. Additionally, the patients' chest computed tomography showed that bilateral lung exudate lesions were adsorbed after MSC infusion. Results indicated that MSC transplantation provides clinical data on the treatment of COVID-19 and may serve as an alternative method for treating COVID-19, particularly in patients with ARDS.
1. USP35 is abundant in human lung cancer tissues and cell lines. 2. USP35 modulates iron homeostasis and ferroptosis in lung cancer tissues and cell lines.3. USP35 directly interacts with ferroportin and maintain its protein stability to prevent iron overload and ferroptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.