Following the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV), a third, highly pathogenic coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appearing at end of 2019 led to a pandemic, increased panic and attracted global attention. This review analyzes the epidemiology, etiology, clinical characteristics, treatment and sequelae of the severe acute respiratory syndrome (SARS), the Middle East respiratory syndrome (MERS) and the 2019 novel coronavirus disease (COVID-19) to help provide direction for further studies that can help understand COVID-19.
Necrosis amplifies inflammation and plays important roles in acute respiratory distress syndrome (ARDS). Necroptosis is a newly identified programmed necrosis that is mediated by receptor interacting protein 3 (RIP3). However, the potential involvement and impact of necroptosis in lipopolysaccharide (LPS)-induced ARDS remains unknown. We therefore explored the role and mechanism of RIP3-mediated necroptosis in LPS-induced ARDS. Mice were instilled with increasing doses of LPS intratracheally to induce different degrees of ARDS. Lung tissues were harvested for histological and TUNEL staining and western blot for RIP3, p-RIP3, X-linked inhibitor of apoptosis protein (XIAP), mixed lineage kinase domain-like protein (MLKL), total and cleaved caspases-3/8. Then, wild-type and RIP3 knock-out mice were induced ARDS with 30 mg/kg LPS. Pulmonary cellular necrosis was labeled by the propidium Iodide (PI) staining. Levels of TNF-a, Interleukin (IL)-1β, IL-6, IL-1α, IL-10 and HMGB1, tissue myeloperoxidase (MPO) activity, neutrophil counts and total protein concentration were measured. Results showed that in high dose LPS (30mg/kg and 40mg/kg) -induced severe ARDS, RIP3 protein was increased significantly, accompanied by increases of p-RIP3 and MLKL, while in low dose LPS (10mg/kg and 20mg/kg) -induced mild ARDS, apoptosis was remarkably increased. In LPS-induced severe ARDS, RIP3 knock-out alleviated the hypothermia symptom, increased survival rate and ameliorated the lung tissue injury RIP3 depletion also attenuated LPS-induced increase in IL-1α/β, IL-6 and HMGB1 release, decreased tissue MPO activity, and reduced neutrophil influx and total protein concentration in BALF in severe ARDS. Further, RIP3 depletion reduced the necrotic cells in the lung and decreased the expression of MLKL, but had no impact on cleaved caspase-3 in LPS-induced ARDS. It is concluded that RIP3-mediated necroptosis is a major mechanism of enhanced inflammation and lung tissue injury in high dose LPS- induced severe ARDS in mice.
Tight Junctions (TJ) are important components of paracellular pathways, and their destruction enhances vascular permeability. Resolvin D1 (RvD1) is a novel lipid mediator that has treatment effects on inflammatory diseases, but its effect on inflammation induced increase in vascular permeability is unclear. To understand whether RvD1 counteracts the lipopolysaccharide (LPS) induced increase in vascular cell permeability, we investigated the effects of RvD1 on endothelial barrier permeability and tight junction reorganization and expression in the presence or absence of LPS stimulation in cultured Human Vascular Endothelial Cells (HUVECs). Our results showed that RvD1 decreased LPS-induced increased in cellular permeability and inhibited the LPS-induced redistribution of zo-1, occludin, and F-actin in HUVECs. Moreover, RvD1 attenuated the expression of IκBα in LPS-induced HUVECs. The NF-κB inhibitor PDTC enhanced the protective effects of RvD1 on restoration of occludin rather than zo-1 expression in LPS-stimulated HUVECs. By contrast, the ERK1/2 inhibitor PD98059 had no effect on LPS-induced alterations in zo-1 and occludin protein expressions in HUVECs. Our data indicate that RvD1 protects against impairment of endothelial barrier function induced by LPS through upregulating the expression of TJ proteins in HUVECs, which involves the IκBα pathway but not the ERK1/2 signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.