G-protein-coupled receptors (GPCRs) are involved in many physiological processes and are therefore key drug targets. Although detailed structural information is available for GPCRs, the effects of lipids on the receptors, and on downstream coupling of GPCRs to G proteins are largely unknown. Here we use native mass spectrometry to identify endogenous lipids bound to three class A GPCRs. We observed preferential binding of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P) over related lipids and confirm that the intracellular surface of the receptors contain hotspots for PtdIns(4,5)P binding. Endogenous lipids were also observed bound directly to the trimeric Gαβγ protein complex of the adenosine A receptor (AR) in the gas phase. Using engineered Gα subunits (mini-Gα mini-Gα and mini-Gα), we demonstrate that the complex of mini-Gα with the β adrenergic receptor (βAR) is stabilized by the binding of two PtdIns(4,5)P molecules. By contrast, PtdIns(4,5)P does not stabilize coupling between βAR and other Gα subunits (mini-Gα or mini-Gα) or a high-affinity nanobody. Other endogenous lipids that bind to these receptors have no effect on coupling, highlighting the specificity of PtdIns(4,5)P. Calculations of potential of mean force and increased GTP turnover by the activated neurotensin receptor when coupled to trimeric Gαβγ complex in the presence of PtdIns(4,5)P provide further evidence for a specific effect of PtdIns(4,5)P on coupling. We identify key residues on cognate Gα subunits through which PtdIns(4,5)P forms bridging interactions with basic residues on class A GPCRs. These modulating effects of lipids on receptors suggest consequences for understanding function, G-protein selectivity and drug targeting of class A GPCRs.
Graphical Abstract Highlights d MD simulations show state-dependent binding of lipids to the Adenosine A2a receptor d Nine lipid interaction sites were revealed, for GM3, cholesterol and PIP 2 d Binding of PIP 2 enhanced the association of mini-Gs with the A2a receptor d These results indicate lipids may allosterically regulate GPCRs SUMMARY Membranes are known to have modulatory effects on G protein-coupled receptors (GPCRs) via specific lipid interactions. However, the mechanisms of such modulations in physiological conditions and how they influence GPCR functions remain unclear.Here we report coarse-grained molecular dynamics simulations on the Adenosine A2a receptor in different conformational states embedded in an in vivo-mimetic membrane model. Nine lipid interaction sites were revealed. The strength of lipid interactions with these sites showed a degree of dependence on the conformational states of the receptor, suggesting that these lipids may regulate the conformational dynamics of the receptor. In particular, we revealed a dual role of PIP 2 on A2aR activation that involves both stabilization of the characteristic outward tilt of TM6 and enhancement of A2aR-mini-Gs association. Our results demonstrated that the bound lipids allosterically regulate the functional properties of GPCRs. These protein-lipid interactions provide a springboard for design of allosteric modulators of GPCRs. which are governed by both the protein receptor and its bound lipids. This opens up new prospects for the pharmacology of GPCRs as their druggable space is expanded to include the bound lipids. The sensitivity of protein-lipid interactions toward the receptor conformational state and the lipid environment may thus provide a platform for designing subtype-selective and cell type-selective drugs. STAR+METHODSDetailed methods are provided in the online version of this paper and include the following:
Lipids play important modulatory and structural roles for membrane proteins. Molecular dynamics simulations are frequently used to provide insights into the nature of these protein−lipid interactions. Systematic comparative analysis requires tools that provide algorithms for objective assessment of such interactions. We introduce PyLipID, a Python package for the identification and characterization of specific lipid interactions and binding sites on membrane proteins from molecular dynamics simulations. PyLipID uses a community analysis approach for binding site detection, calculating lipid residence times for both the individual protein residues and the detected binding sites. To assist structural analysis, PyLipID produces representative bound lipid poses from simulation data, using a density-based scoring function. To estimate residue contacts robustly, PyLipID uses a dual-cutoff scheme to differentiate between lipid conformational rearrangements while bound from full dissociation events. In addition to the characterization of protein−lipid interactions, PyLipID is applicable to analysis of the interactions of membrane proteins with other ligands. By combining automated analysis, efficient algorithms, and open-source distribution, PyLipID facilitates the systematic analysis of lipid interactions from large simulation data sets of multiple species of membrane proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.